Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptre.1 |
⊢ 𝑅 = ( TopOpen ‘ ℂfld ) |
2 |
|
cnmptre.2 |
⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) |
3 |
|
cnmptre.3 |
⊢ 𝐾 = ( ( topGen ‘ ran (,) ) ↾t 𝐵 ) |
4 |
|
cnmptre.4 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
5 |
|
cnmptre.5 |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
6 |
|
cnmptre.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ 𝐵 ) |
7 |
|
cnmptre.7 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝐹 ) ∈ ( 𝑅 Cn 𝑅 ) ) |
8 |
|
eqid |
⊢ ( 𝑅 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) |
9 |
1
|
cnfldtopon |
⊢ 𝑅 ∈ ( TopOn ‘ ℂ ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → 𝑅 ∈ ( TopOn ‘ ℂ ) ) |
11 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
12 |
4 11
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
13 |
8 10 12 7
|
cnmpt1res |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( ( 𝑅 ↾t 𝐴 ) Cn 𝑅 ) ) |
14 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
15 |
1 14
|
rerest |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑅 ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
17 |
16 2
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐴 ) = 𝐽 ) |
18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑅 ↾t 𝐴 ) Cn 𝑅 ) = ( 𝐽 Cn 𝑅 ) ) |
19 |
13 18
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝑅 ) ) |
20 |
6
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
21 |
20
|
frnd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ⊆ 𝐵 ) |
22 |
5 11
|
sstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
23 |
|
cnrest2 |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝑅 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) ) ) |
24 |
9 21 22 23
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝑅 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) ) ) |
25 |
19 24
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) ) |
26 |
1 14
|
rerest |
⊢ ( 𝐵 ⊆ ℝ → ( 𝑅 ↾t 𝐵 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐵 ) ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐵 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐵 ) ) |
28 |
27 3
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐵 ) = 𝐾 ) |
29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) = ( 𝐽 Cn 𝐾 ) ) |
30 |
25 29
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |