Metamath Proof Explorer


Theorem cnmsgnbas

Description: The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgngrp.u 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
Assertion cnmsgnbas { 1 , - 1 } = ( Base ‘ 𝑈 )

Proof

Step Hyp Ref Expression
1 cnmsgngrp.u 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
2 ax-1cn 1 ∈ ℂ
3 neg1cn - 1 ∈ ℂ
4 prssi ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ )
5 2 3 4 mp2an { 1 , - 1 } ⊆ ℂ
6 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
7 cnfldbas ℂ = ( Base ‘ ℂfld )
8 6 7 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
9 1 8 ressbas2 ( { 1 , - 1 } ⊆ ℂ → { 1 , - 1 } = ( Base ‘ 𝑈 ) )
10 5 9 ax-mp { 1 , - 1 } = ( Base ‘ 𝑈 )