Description: The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmsgngrp.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| Assertion | cnmsgnbas | ⊢ { 1 , - 1 } = ( Base ‘ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgngrp.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 4 | prssi | ⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ ) | |
| 5 | 2 3 4 | mp2an | ⊢ { 1 , - 1 } ⊆ ℂ |
| 6 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 7 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 8 | 6 7 | mgpbas | ⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 9 | 1 8 | ressbas2 | ⊢ ( { 1 , - 1 } ⊆ ℂ → { 1 , - 1 } = ( Base ‘ 𝑈 ) ) |
| 10 | 5 9 | ax-mp | ⊢ { 1 , - 1 } = ( Base ‘ 𝑈 ) |