| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmsgngrp.u |
⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 2 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 3 |
2
|
cnmsgnsubg |
⊢ { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 4 |
|
cnex |
⊢ ℂ ∈ V |
| 5 |
4
|
difexi |
⊢ ( ℂ ∖ { 0 } ) ∈ V |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 8 |
|
eldifsn |
⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) |
| 9 |
6 7 8
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 10 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 11 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 12 |
|
eldifsn |
⊢ ( - 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ) |
| 13 |
10 11 12
|
mpbir2an |
⊢ - 1 ∈ ( ℂ ∖ { 0 } ) |
| 14 |
|
prssi |
⊢ ( ( 1 ∈ ( ℂ ∖ { 0 } ) ∧ - 1 ∈ ( ℂ ∖ { 0 } ) ) → { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) |
| 15 |
9 13 14
|
mp2an |
⊢ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) |
| 16 |
|
ressabs |
⊢ ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 17 |
5 15 16
|
mp2an |
⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 18 |
1 17
|
eqtr4i |
⊢ 𝑈 = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) |
| 19 |
18
|
subggrp |
⊢ ( { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → 𝑈 ∈ Grp ) |
| 20 |
3 19
|
ax-mp |
⊢ 𝑈 ∈ Grp |