| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmsgnsubg.m |
⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 2 |
|
elpri |
⊢ ( 𝑥 ∈ { 1 , - 1 } → ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ) |
| 3 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
| 4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 5 |
3 4
|
eqeltrdi |
⊢ ( 𝑥 = 1 → 𝑥 ∈ ℂ ) |
| 6 |
|
id |
⊢ ( 𝑥 = - 1 → 𝑥 = - 1 ) |
| 7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 8 |
6 7
|
eqeltrdi |
⊢ ( 𝑥 = - 1 → 𝑥 ∈ ℂ ) |
| 9 |
5 8
|
jaoi |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → 𝑥 ∈ ℂ ) |
| 10 |
2 9
|
syl |
⊢ ( 𝑥 ∈ { 1 , - 1 } → 𝑥 ∈ ℂ ) |
| 11 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 12 |
11
|
a1i |
⊢ ( 𝑥 = 1 → 1 ≠ 0 ) |
| 13 |
3 12
|
eqnetrd |
⊢ ( 𝑥 = 1 → 𝑥 ≠ 0 ) |
| 14 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 15 |
14
|
a1i |
⊢ ( 𝑥 = - 1 → - 1 ≠ 0 ) |
| 16 |
6 15
|
eqnetrd |
⊢ ( 𝑥 = - 1 → 𝑥 ≠ 0 ) |
| 17 |
13 16
|
jaoi |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → 𝑥 ≠ 0 ) |
| 18 |
2 17
|
syl |
⊢ ( 𝑥 ∈ { 1 , - 1 } → 𝑥 ≠ 0 ) |
| 19 |
|
elpri |
⊢ ( 𝑦 ∈ { 1 , - 1 } → ( 𝑦 = 1 ∨ 𝑦 = - 1 ) ) |
| 20 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · 1 ) ) |
| 21 |
4
|
mulridi |
⊢ ( 1 · 1 ) = 1 |
| 22 |
|
1ex |
⊢ 1 ∈ V |
| 23 |
22
|
prid1 |
⊢ 1 ∈ { 1 , - 1 } |
| 24 |
21 23
|
eqeltri |
⊢ ( 1 · 1 ) ∈ { 1 , - 1 } |
| 25 |
20 24
|
eqeltrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 26 |
|
oveq12 |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( - 1 · 1 ) ) |
| 27 |
7
|
mulridi |
⊢ ( - 1 · 1 ) = - 1 |
| 28 |
|
negex |
⊢ - 1 ∈ V |
| 29 |
28
|
prid2 |
⊢ - 1 ∈ { 1 , - 1 } |
| 30 |
27 29
|
eqeltri |
⊢ ( - 1 · 1 ) ∈ { 1 , - 1 } |
| 31 |
26 30
|
eqeltrdi |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 32 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · - 1 ) ) |
| 33 |
7
|
mullidi |
⊢ ( 1 · - 1 ) = - 1 |
| 34 |
33 29
|
eqeltri |
⊢ ( 1 · - 1 ) ∈ { 1 , - 1 } |
| 35 |
32 34
|
eqeltrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 36 |
|
oveq12 |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) = ( - 1 · - 1 ) ) |
| 37 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
| 38 |
37 23
|
eqeltri |
⊢ ( - 1 · - 1 ) ∈ { 1 , - 1 } |
| 39 |
36 38
|
eqeltrdi |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 40 |
25 31 35 39
|
ccase |
⊢ ( ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ∧ ( 𝑦 = 1 ∨ 𝑦 = - 1 ) ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 41 |
2 19 40
|
syl2an |
⊢ ( ( 𝑥 ∈ { 1 , - 1 } ∧ 𝑦 ∈ { 1 , - 1 } ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 42 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) = ( 1 / 1 ) ) |
| 43 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 44 |
43 23
|
eqeltri |
⊢ ( 1 / 1 ) ∈ { 1 , - 1 } |
| 45 |
42 44
|
eqeltrdi |
⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 46 |
|
oveq2 |
⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) = ( 1 / - 1 ) ) |
| 47 |
|
divneg2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) |
| 48 |
4 4 11 47
|
mp3an |
⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
| 49 |
43
|
negeqi |
⊢ - ( 1 / 1 ) = - 1 |
| 50 |
48 49
|
eqtr3i |
⊢ ( 1 / - 1 ) = - 1 |
| 51 |
50 29
|
eqeltri |
⊢ ( 1 / - 1 ) ∈ { 1 , - 1 } |
| 52 |
46 51
|
eqeltrdi |
⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 53 |
45 52
|
jaoi |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 54 |
2 53
|
syl |
⊢ ( 𝑥 ∈ { 1 , - 1 } → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 55 |
1 10 18 41 23 54
|
cnmsubglem |
⊢ { 1 , - 1 } ∈ ( SubGrp ‘ 𝑀 ) |