Step |
Hyp |
Ref |
Expression |
1 |
|
cnmsgnsubg.m |
⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
2 |
|
elpri |
⊢ ( 𝑥 ∈ { 1 , - 1 } → ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ) |
3 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
5 |
3 4
|
eqeltrdi |
⊢ ( 𝑥 = 1 → 𝑥 ∈ ℂ ) |
6 |
|
id |
⊢ ( 𝑥 = - 1 → 𝑥 = - 1 ) |
7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
8 |
6 7
|
eqeltrdi |
⊢ ( 𝑥 = - 1 → 𝑥 ∈ ℂ ) |
9 |
5 8
|
jaoi |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → 𝑥 ∈ ℂ ) |
10 |
2 9
|
syl |
⊢ ( 𝑥 ∈ { 1 , - 1 } → 𝑥 ∈ ℂ ) |
11 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
12 |
11
|
a1i |
⊢ ( 𝑥 = 1 → 1 ≠ 0 ) |
13 |
3 12
|
eqnetrd |
⊢ ( 𝑥 = 1 → 𝑥 ≠ 0 ) |
14 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
15 |
14
|
a1i |
⊢ ( 𝑥 = - 1 → - 1 ≠ 0 ) |
16 |
6 15
|
eqnetrd |
⊢ ( 𝑥 = - 1 → 𝑥 ≠ 0 ) |
17 |
13 16
|
jaoi |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → 𝑥 ≠ 0 ) |
18 |
2 17
|
syl |
⊢ ( 𝑥 ∈ { 1 , - 1 } → 𝑥 ≠ 0 ) |
19 |
|
elpri |
⊢ ( 𝑦 ∈ { 1 , - 1 } → ( 𝑦 = 1 ∨ 𝑦 = - 1 ) ) |
20 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · 1 ) ) |
21 |
4
|
mulid1i |
⊢ ( 1 · 1 ) = 1 |
22 |
|
1ex |
⊢ 1 ∈ V |
23 |
22
|
prid1 |
⊢ 1 ∈ { 1 , - 1 } |
24 |
21 23
|
eqeltri |
⊢ ( 1 · 1 ) ∈ { 1 , - 1 } |
25 |
20 24
|
eqeltrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
26 |
|
oveq12 |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( - 1 · 1 ) ) |
27 |
7
|
mulid1i |
⊢ ( - 1 · 1 ) = - 1 |
28 |
|
negex |
⊢ - 1 ∈ V |
29 |
28
|
prid2 |
⊢ - 1 ∈ { 1 , - 1 } |
30 |
27 29
|
eqeltri |
⊢ ( - 1 · 1 ) ∈ { 1 , - 1 } |
31 |
26 30
|
eqeltrdi |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
32 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · - 1 ) ) |
33 |
7
|
mulid2i |
⊢ ( 1 · - 1 ) = - 1 |
34 |
33 29
|
eqeltri |
⊢ ( 1 · - 1 ) ∈ { 1 , - 1 } |
35 |
32 34
|
eqeltrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
36 |
|
oveq12 |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) = ( - 1 · - 1 ) ) |
37 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
38 |
37 23
|
eqeltri |
⊢ ( - 1 · - 1 ) ∈ { 1 , - 1 } |
39 |
36 38
|
eqeltrdi |
⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
40 |
25 31 35 39
|
ccase |
⊢ ( ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ∧ ( 𝑦 = 1 ∨ 𝑦 = - 1 ) ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
41 |
2 19 40
|
syl2an |
⊢ ( ( 𝑥 ∈ { 1 , - 1 } ∧ 𝑦 ∈ { 1 , - 1 } ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
42 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) = ( 1 / 1 ) ) |
43 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
44 |
43 23
|
eqeltri |
⊢ ( 1 / 1 ) ∈ { 1 , - 1 } |
45 |
42 44
|
eqeltrdi |
⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
46 |
|
oveq2 |
⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) = ( 1 / - 1 ) ) |
47 |
|
divneg2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) |
48 |
4 4 11 47
|
mp3an |
⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
49 |
43
|
negeqi |
⊢ - ( 1 / 1 ) = - 1 |
50 |
48 49
|
eqtr3i |
⊢ ( 1 / - 1 ) = - 1 |
51 |
50 29
|
eqeltri |
⊢ ( 1 / - 1 ) ∈ { 1 , - 1 } |
52 |
46 51
|
eqeltrdi |
⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
53 |
45 52
|
jaoi |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
54 |
2 53
|
syl |
⊢ ( 𝑥 ∈ { 1 , - 1 } → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
55 |
1 10 18 41 23 54
|
cnmsubglem |
⊢ { 1 , - 1 } ∈ ( SubGrp ‘ 𝑀 ) |