Step |
Hyp |
Ref |
Expression |
1 |
|
cnmgpabl.m |
⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
2 |
|
cnmsubglem.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
3 |
|
cnmsubglem.2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ≠ 0 ) |
4 |
|
cnmsubglem.3 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
5 |
|
cnmsubglem.4 |
⊢ 1 ∈ 𝐴 |
6 |
|
cnmsubglem.5 |
⊢ ( 𝑥 ∈ 𝐴 → ( 1 / 𝑥 ) ∈ 𝐴 ) |
7 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
8 |
2 3 7
|
sylanbrc |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
9 |
8
|
ssriv |
⊢ 𝐴 ⊆ ( ℂ ∖ { 0 } ) |
10 |
5
|
ne0ii |
⊢ 𝐴 ≠ ∅ |
11 |
4
|
ralrimiva |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
12 |
|
cnfldinv |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
13 |
2 3 12
|
syl2anc |
⊢ ( 𝑥 ∈ 𝐴 → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
14 |
13 6
|
eqeltrd |
⊢ ( 𝑥 ∈ 𝐴 → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
15 |
11 14
|
jca |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) |
16 |
15
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
17 |
1
|
cnmgpabl |
⊢ 𝑀 ∈ Abel |
18 |
|
ablgrp |
⊢ ( 𝑀 ∈ Abel → 𝑀 ∈ Grp ) |
19 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
20 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
21 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
22 |
20 21
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
23 |
1 22
|
ressbas2 |
⊢ ( ( ℂ ∖ { 0 } ) ⊆ ℂ → ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑀 ) ) |
24 |
19 23
|
ax-mp |
⊢ ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑀 ) |
25 |
|
cnex |
⊢ ℂ ∈ V |
26 |
|
difexg |
⊢ ( ℂ ∈ V → ( ℂ ∖ { 0 } ) ∈ V ) |
27 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
28 |
20 27
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
29 |
1 28
|
ressplusg |
⊢ ( ( ℂ ∖ { 0 } ) ∈ V → · = ( +g ‘ 𝑀 ) ) |
30 |
25 26 29
|
mp2b |
⊢ · = ( +g ‘ 𝑀 ) |
31 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
32 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
33 |
21 31 32
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
34 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
35 |
33 1 34
|
invrfval |
⊢ ( invr ‘ ℂfld ) = ( invg ‘ 𝑀 ) |
36 |
24 30 35
|
issubg2 |
⊢ ( 𝑀 ∈ Grp → ( 𝐴 ∈ ( SubGrp ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( ℂ ∖ { 0 } ) ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) ) |
37 |
17 18 36
|
mp2b |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( ℂ ∖ { 0 } ) ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
38 |
9 10 16 37
|
mpbir3an |
⊢ 𝐴 ∈ ( SubGrp ‘ 𝑀 ) |