Metamath Proof Explorer


Theorem cnngp

Description: The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion cnngp fld ∈ NrmGrp

Proof

Step Hyp Ref Expression
1 cnring fld ∈ Ring
2 ringgrp ( ℂfld ∈ Ring → ℂfld ∈ Grp )
3 1 2 ax-mp fld ∈ Grp
4 cnfldms fld ∈ MetSp
5 ssid ( abs ∘ − ) ⊆ ( abs ∘ − )
6 cnfldnm abs = ( norm ‘ ℂfld )
7 cnfldsub − = ( -g ‘ ℂfld )
8 cnfldds ( abs ∘ − ) = ( dist ‘ ℂfld )
9 6 7 8 isngp ( ℂfld ∈ NrmGrp ↔ ( ℂfld ∈ Grp ∧ ℂfld ∈ MetSp ∧ ( abs ∘ − ) ⊆ ( abs ∘ − ) ) )
10 3 4 5 9 mpbir3an fld ∈ NrmGrp