Description: The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnnrg | ⊢ ℂfld ∈ NrmRing | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnngp | ⊢ ℂfld ∈ NrmGrp | |
| 2 | absabv | ⊢ abs ∈ ( AbsVal ‘ ℂfld ) | |
| 3 | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) | |
| 4 | eqid | ⊢ ( AbsVal ‘ ℂfld ) = ( AbsVal ‘ ℂfld ) | |
| 5 | 3 4 | isnrg | ⊢ ( ℂfld ∈ NrmRing ↔ ( ℂfld ∈ NrmGrp ∧ abs ∈ ( AbsVal ‘ ℂfld ) ) ) | 
| 6 | 1 2 5 | mpbir2an | ⊢ ℂfld ∈ NrmRing |