Description: The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnnrg | ⊢ ℂfld ∈ NrmRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnngp | ⊢ ℂfld ∈ NrmGrp | |
2 | absabv | ⊢ abs ∈ ( AbsVal ‘ ℂfld ) | |
3 | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) | |
4 | eqid | ⊢ ( AbsVal ‘ ℂfld ) = ( AbsVal ‘ ℂfld ) | |
5 | 3 4 | isnrg | ⊢ ( ℂfld ∈ NrmRing ↔ ( ℂfld ∈ NrmGrp ∧ abs ∈ ( AbsVal ‘ ℂfld ) ) ) |
6 | 1 2 5 | mpbir2an | ⊢ ℂfld ∈ NrmRing |