Metamath Proof Explorer


Theorem cnnvba

Description: The base set of the normed complex vector space of complex numbers. (Contributed by NM, 7-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis cnnvba.6 𝑈 = ⟨ ⟨ + , · ⟩ , abs ⟩
Assertion cnnvba ℂ = ( BaseSet ‘ 𝑈 )

Proof

Step Hyp Ref Expression
1 cnnvba.6 𝑈 = ⟨ ⟨ + , · ⟩ , abs ⟩
2 1 cnnvg + = ( +𝑣𝑈 )
3 2 rneqi ran + = ran ( +𝑣𝑈 )
4 cnaddabloOLD + ∈ AbelOp
5 ablogrpo ( + ∈ AbelOp → + ∈ GrpOp )
6 4 5 ax-mp + ∈ GrpOp
7 ax-addf + : ( ℂ × ℂ ) ⟶ ℂ
8 7 fdmi dom + = ( ℂ × ℂ )
9 6 8 grporn ℂ = ran +
10 eqid ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 )
11 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
12 10 11 bafval ( BaseSet ‘ 𝑈 ) = ran ( +𝑣𝑈 )
13 3 9 12 3eqtr4i ℂ = ( BaseSet ‘ 𝑈 )