Metamath Proof Explorer


Theorem cnnvnm

Description: The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis cnnvnm.6 𝑈 = ⟨ ⟨ + , · ⟩ , abs ⟩
Assertion cnnvnm abs = ( normCV𝑈 )

Proof

Step Hyp Ref Expression
1 cnnvnm.6 𝑈 = ⟨ ⟨ + , · ⟩ , abs ⟩
2 eqid ( normCV𝑈 ) = ( normCV𝑈 )
3 2 nmcvfval ( normCV𝑈 ) = ( 2nd𝑈 )
4 1 fveq2i ( 2nd𝑈 ) = ( 2nd ‘ ⟨ ⟨ + , · ⟩ , abs ⟩ )
5 opex ⟨ + , · ⟩ ∈ V
6 absf abs : ℂ ⟶ ℝ
7 cnex ℂ ∈ V
8 fex ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V )
9 6 7 8 mp2an abs ∈ V
10 5 9 op2nd ( 2nd ‘ ⟨ ⟨ + , · ⟩ , abs ⟩ ) = abs
11 3 4 10 3eqtrri abs = ( normCV𝑈 )