Description: The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnnvnm.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
Assertion | cnnvnm | ⊢ abs = ( normCV ‘ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnvnm.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
2 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
3 | 2 | nmcvfval | ⊢ ( normCV ‘ 𝑈 ) = ( 2nd ‘ 𝑈 ) |
4 | 1 | fveq2i | ⊢ ( 2nd ‘ 𝑈 ) = ( 2nd ‘ 〈 〈 + , · 〉 , abs 〉 ) |
5 | opex | ⊢ 〈 + , · 〉 ∈ V | |
6 | absf | ⊢ abs : ℂ ⟶ ℝ | |
7 | cnex | ⊢ ℂ ∈ V | |
8 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
9 | 6 7 8 | mp2an | ⊢ abs ∈ V |
10 | 5 9 | op2nd | ⊢ ( 2nd ‘ 〈 〈 + , · 〉 , abs 〉 ) = abs |
11 | 3 4 10 | 3eqtrri | ⊢ abs = ( normCV ‘ 𝑈 ) |