Description: The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnnvnm.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| Assertion | cnnvnm | ⊢ abs = ( normCV ‘ 𝑈 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnnvnm.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| 2 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 3 | 2 | nmcvfval | ⊢ ( normCV ‘ 𝑈 ) = ( 2nd ‘ 𝑈 ) | 
| 4 | 1 | fveq2i | ⊢ ( 2nd ‘ 𝑈 ) = ( 2nd ‘ 〈 〈 + , · 〉 , abs 〉 ) | 
| 5 | opex | ⊢ 〈 + , · 〉 ∈ V | |
| 6 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 7 | cnex | ⊢ ℂ ∈ V | |
| 8 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
| 9 | 6 7 8 | mp2an | ⊢ abs ∈ V | 
| 10 | 5 9 | op2nd | ⊢ ( 2nd ‘ 〈 〈 + , · 〉 , abs 〉 ) = abs | 
| 11 | 3 4 10 | 3eqtrri | ⊢ abs = ( normCV ‘ 𝑈 ) |