| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elcnop |
⊢ ( 𝑇 ∈ ContOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑧 ∈ ℋ ∀ 𝑤 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ) ) |
| 2 |
1
|
simprbi |
⊢ ( 𝑇 ∈ ContOp → ∀ 𝑧 ∈ ℋ ∀ 𝑤 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑦 −ℎ 𝑧 ) = ( 𝑦 −ℎ 𝐴 ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝑧 = 𝐴 → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) = ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) ) |
| 5 |
4
|
breq1d |
⊢ ( 𝑧 = 𝐴 → ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 ↔ ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝐴 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑧 = 𝐴 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 9 |
8
|
breq1d |
⊢ ( 𝑧 = 𝐴 → ( ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ↔ ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ) |
| 10 |
5 9
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ↔ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ) ) |
| 11 |
10
|
rexralbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ) ) |
| 12 |
|
breq2 |
⊢ ( 𝑤 = 𝐵 → ( ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ↔ ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ↔ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 14 |
13
|
rexralbidv |
⊢ ( 𝑤 = 𝐵 → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 15 |
11 14
|
rspc2v |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ ℋ ∀ 𝑤 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 16 |
2 15
|
syl5com |
⊢ ( 𝑇 ∈ ContOp → ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 17 |
16
|
3impib |
⊢ ( ( 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) |