| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nel |
⊢ ( - ( i · 𝐴 ) ∉ ℝ+ ↔ ¬ - ( i · 𝐴 ) ∈ ℝ+ ) |
| 2 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ 𝐴 ) = 0 ) |
| 3 |
|
0le0 |
⊢ 0 ≤ 0 |
| 4 |
2 3
|
eqbrtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ 𝐴 ) ≤ 0 ) |
| 5 |
4
|
biantrurd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - ( i · 𝐴 ) ∉ ℝ+ ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 6 |
1 5
|
bitr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ¬ - ( i · 𝐴 ) ∈ ℝ+ ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 7 |
6
|
con1bid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ↔ - ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 8 |
|
ax-icn |
⊢ i ∈ ℂ |
| 9 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 10 |
8 9
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 11 |
|
reim0b |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) ) |
| 13 |
|
imre |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) ) |
| 14 |
10 13
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) ) |
| 15 |
|
ine0 |
⊢ i ≠ 0 |
| 16 |
|
divrec2 |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · 𝐴 ) / i ) = ( ( 1 / i ) · ( i · 𝐴 ) ) ) |
| 17 |
8 15 16
|
mp3an23 |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) / i ) = ( ( 1 / i ) · ( i · 𝐴 ) ) ) |
| 18 |
10 17
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) / i ) = ( ( 1 / i ) · ( i · 𝐴 ) ) ) |
| 19 |
|
irec |
⊢ ( 1 / i ) = - i |
| 20 |
19
|
oveq1i |
⊢ ( ( 1 / i ) · ( i · 𝐴 ) ) = ( - i · ( i · 𝐴 ) ) |
| 21 |
18 20
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) / i ) = ( - i · ( i · 𝐴 ) ) ) |
| 22 |
|
divcan3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · 𝐴 ) / i ) = 𝐴 ) |
| 23 |
8 15 22
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) / i ) = 𝐴 ) |
| 24 |
21 23
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( i · 𝐴 ) ) = 𝐴 ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 26 |
14 25
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 27 |
26
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( i · 𝐴 ) ) = 0 ↔ ( ℜ ‘ 𝐴 ) = 0 ) ) |
| 28 |
12 27
|
bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 0 ) ) |
| 29 |
28
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℝ ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℝ ) |
| 31 |
|
mulne0 |
⊢ ( ( ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( i · 𝐴 ) ≠ 0 ) |
| 32 |
8 15 31
|
mpanl12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · 𝐴 ) ≠ 0 ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ≠ 0 ) |
| 34 |
|
rpneg |
⊢ ( ( ( i · 𝐴 ) ∈ ℝ ∧ ( i · 𝐴 ) ≠ 0 ) → ( ( i · 𝐴 ) ∈ ℝ+ ↔ ¬ - ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 35 |
30 33 34
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · 𝐴 ) ∈ ℝ+ ↔ ¬ - ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 36 |
35
|
con2bid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - ( i · 𝐴 ) ∈ ℝ+ ↔ ¬ ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 37 |
|
df-nel |
⊢ ( ( i · 𝐴 ) ∉ ℝ+ ↔ ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 38 |
36 37
|
bitr4di |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - ( i · 𝐴 ) ∈ ℝ+ ↔ ( i · 𝐴 ) ∉ ℝ+ ) ) |
| 39 |
3 2
|
breqtrrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) |
| 40 |
39
|
biantrurd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · 𝐴 ) ∉ ℝ+ ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 41 |
7 38 40
|
3bitrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 42 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 0 ) ) |
| 43 |
42
|
necon3bbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) ≠ 0 ) ) |
| 44 |
43
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐴 ) ∈ ℝ ) |
| 45 |
|
rpre |
⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( i · 𝐴 ) ∈ ℝ ) |
| 46 |
44 45
|
nsyl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 47 |
46 37
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · 𝐴 ) ∉ ℝ+ ) |
| 48 |
47
|
biantrud |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 50 |
49
|
biantrud |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ) ) |
| 51 |
|
0re |
⊢ 0 ∈ ℝ |
| 52 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 53 |
|
ltlen |
⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℜ ‘ 𝐴 ) ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ) ) |
| 54 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℜ ‘ 𝐴 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 55 |
53 54
|
bitr3d |
⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 56 |
51 52 55
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 58 |
50 57
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 59 |
48 58
|
bitr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 60 |
|
renegcl |
⊢ ( - ( i · 𝐴 ) ∈ ℝ → - - ( i · 𝐴 ) ∈ ℝ ) |
| 61 |
10
|
negnegd |
⊢ ( 𝐴 ∈ ℂ → - - ( i · 𝐴 ) = ( i · 𝐴 ) ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝐴 ∈ ℂ → ( - - ( i · 𝐴 ) ∈ ℝ ↔ ( i · 𝐴 ) ∈ ℝ ) ) |
| 63 |
62
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - - ( i · 𝐴 ) ∈ ℝ ↔ ( i · 𝐴 ) ∈ ℝ ) ) |
| 64 |
60 63
|
imbitrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - ( i · 𝐴 ) ∈ ℝ → ( i · 𝐴 ) ∈ ℝ ) ) |
| 65 |
44 64
|
mtod |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ - ( i · 𝐴 ) ∈ ℝ ) |
| 66 |
|
rpre |
⊢ ( - ( i · 𝐴 ) ∈ ℝ+ → - ( i · 𝐴 ) ∈ ℝ ) |
| 67 |
65 66
|
nsyl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ - ( i · 𝐴 ) ∈ ℝ+ ) |
| 68 |
67 1
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( i · 𝐴 ) ∉ ℝ+ ) |
| 69 |
68
|
biantrud |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) ≤ 0 ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 70 |
69
|
notbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 71 |
59 70
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 72 |
41 71
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 73 |
|
reneg |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 74 |
73
|
breq2d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ℜ ‘ - 𝐴 ) ↔ 0 ≤ - ( ℜ ‘ 𝐴 ) ) ) |
| 75 |
52
|
le0neg1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ≤ 0 ↔ 0 ≤ - ( ℜ ‘ 𝐴 ) ) ) |
| 76 |
74 75
|
bitr4d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ℜ ‘ - 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 77 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 78 |
8 77
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 79 |
|
neleq1 |
⊢ ( ( i · - 𝐴 ) = - ( i · 𝐴 ) → ( ( i · - 𝐴 ) ∉ ℝ+ ↔ - ( i · 𝐴 ) ∉ ℝ+ ) ) |
| 80 |
78 79
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) ∉ ℝ+ ↔ - ( i · 𝐴 ) ∉ ℝ+ ) ) |
| 81 |
76 80
|
anbi12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 82 |
81
|
notbid |
⊢ ( 𝐴 ∈ ℂ → ( ¬ ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 84 |
72 83
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ) ) |