Metamath Proof Explorer


Theorem cnpcl

Description: The value of a continuous function from J to K at point P belongs to the underlying set of topology K . (Contributed by FL, 27-Dec-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses iscnp2.1 𝑋 = 𝐽
iscnp2.2 𝑌 = 𝐾
Assertion cnpcl ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴𝑋 ) → ( 𝐹𝐴 ) ∈ 𝑌 )

Proof

Step Hyp Ref Expression
1 iscnp2.1 𝑋 = 𝐽
2 iscnp2.2 𝑌 = 𝐾
3 1 2 cnpf ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐹 : 𝑋𝑌 )
4 3 ffvelrnda ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴𝑋 ) → ( 𝐹𝐴 ) ∈ 𝑌 )