Step |
Hyp |
Ref |
Expression |
1 |
|
cnptop1 |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐽 ∈ Top ) |
3 |
|
cnptop2 |
⊢ ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) → 𝐿 ∈ Top ) |
4 |
3
|
adantl |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐿 ∈ Top ) |
5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
6 |
5
|
cnprcl |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑃 ∈ ∪ 𝐽 ) |
8 |
2 4 7
|
3jca |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ) |
9 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
10 |
|
eqid |
⊢ ∪ 𝐿 = ∪ 𝐿 |
11 |
9 10
|
cnpf |
⊢ ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) → 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
13 |
5 9
|
cnpf |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
14 |
13
|
adantr |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
15 |
|
fco |
⊢ ( ( 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ∧ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) |
17 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
18 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → 𝑧 ∈ 𝐿 ) |
19 |
|
fvco3 |
⊢ ( ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
20 |
14 7 19
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
22 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) |
23 |
21 22
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝑧 ) |
24 |
|
cnpimaex |
⊢ ( ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑧 ∈ 𝐿 ∧ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) |
25 |
17 18 23 24
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) |
26 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
27 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → 𝑦 ∈ 𝐾 ) |
28 |
|
simprrl |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) |
29 |
|
cnpimaex |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
31 |
|
imaco |
⊢ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) = ( 𝐺 “ ( 𝐹 “ 𝑥 ) ) |
32 |
|
imass2 |
⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐺 “ ( 𝐹 “ 𝑥 ) ) ⊆ ( 𝐺 “ 𝑦 ) ) |
33 |
31 32
|
eqsstrid |
⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ ( 𝐺 “ 𝑦 ) ) |
34 |
|
simprrr |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) |
35 |
|
sstr2 |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ ( 𝐺 “ 𝑦 ) → ( ( 𝐺 “ 𝑦 ) ⊆ 𝑧 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
36 |
33 34 35
|
syl2imc |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
37 |
36
|
anim2d |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
38 |
37
|
reximdv |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
39 |
30 38
|
mpd |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
40 |
25 39
|
rexlimddv |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
41 |
40
|
expr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ 𝐿 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
43 |
16 42
|
jca |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
44 |
5 10
|
iscnp2 |
⊢ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ∧ ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
45 |
8 43 44
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝑃 ) ) |