| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnptop1 |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐽 ∈ Top ) |
| 3 |
|
cnptop2 |
⊢ ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) → 𝐿 ∈ Top ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐿 ∈ Top ) |
| 5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 6 |
5
|
cnprcl |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑃 ∈ ∪ 𝐽 ) |
| 8 |
2 4 7
|
3jca |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ) |
| 9 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 10 |
|
eqid |
⊢ ∪ 𝐿 = ∪ 𝐿 |
| 11 |
9 10
|
cnpf |
⊢ ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) → 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 13 |
5 9
|
cnpf |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 15 |
|
fco |
⊢ ( ( 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ∧ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 18 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → 𝑧 ∈ 𝐿 ) |
| 19 |
|
fvco3 |
⊢ ( ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 20 |
14 7 19
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 22 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) |
| 23 |
21 22
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝑧 ) |
| 24 |
|
cnpimaex |
⊢ ( ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑧 ∈ 𝐿 ∧ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) |
| 25 |
17 18 23 24
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) |
| 26 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 27 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → 𝑦 ∈ 𝐾 ) |
| 28 |
|
simprrl |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) |
| 29 |
|
cnpimaex |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
| 30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
| 31 |
|
imaco |
⊢ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) = ( 𝐺 “ ( 𝐹 “ 𝑥 ) ) |
| 32 |
|
imass2 |
⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐺 “ ( 𝐹 “ 𝑥 ) ) ⊆ ( 𝐺 “ 𝑦 ) ) |
| 33 |
31 32
|
eqsstrid |
⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ ( 𝐺 “ 𝑦 ) ) |
| 34 |
|
simprrr |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) |
| 35 |
|
sstr2 |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ ( 𝐺 “ 𝑦 ) → ( ( 𝐺 “ 𝑦 ) ⊆ 𝑧 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
| 36 |
33 34 35
|
syl2imc |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
| 37 |
36
|
anim2d |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 38 |
37
|
reximdv |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 39 |
30 38
|
mpd |
⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
| 40 |
25 39
|
rexlimddv |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
| 41 |
40
|
expr |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ 𝐿 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 42 |
41
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 43 |
16 42
|
jca |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 44 |
5 10
|
iscnp2 |
⊢ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ∧ ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
| 45 |
8 43 44
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝑃 ) ) |