Metamath Proof Explorer
Description: The complex numbers are a perfect space. (Contributed by Mario
Carneiro, 26-Dec-2016)
|
|
Ref |
Expression |
|
Hypothesis |
recld2.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
|
Assertion |
cnperf |
⊢ 𝐽 ∈ Perf |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recld2.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
3 |
2
|
toponunii |
⊢ ℂ = ∪ 𝐽 |
4 |
3
|
restid |
⊢ ( 𝐽 ∈ ( TopOn ‘ ℂ ) → ( 𝐽 ↾t ℂ ) = 𝐽 ) |
5 |
2 4
|
ax-mp |
⊢ ( 𝐽 ↾t ℂ ) = 𝐽 |
6 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
7 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
9 |
|
ssid |
⊢ ℂ ⊆ ℂ |
10 |
1 8 9
|
reperflem |
⊢ ( 𝐽 ↾t ℂ ) ∈ Perf |
11 |
5 10
|
eqeltrri |
⊢ 𝐽 ∈ Perf |