Metamath Proof Explorer


Theorem cnperf

Description: The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis recld2.1 𝐽 = ( TopOpen ‘ ℂfld )
Assertion cnperf 𝐽 ∈ Perf

Proof

Step Hyp Ref Expression
1 recld2.1 𝐽 = ( TopOpen ‘ ℂfld )
2 1 cnfldtopon 𝐽 ∈ ( TopOn ‘ ℂ )
3 2 toponunii ℂ = 𝐽
4 3 restid ( 𝐽 ∈ ( TopOn ‘ ℂ ) → ( 𝐽t ℂ ) = 𝐽 )
5 2 4 ax-mp ( 𝐽t ℂ ) = 𝐽
6 recn ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ )
7 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
8 6 7 sylan2 ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
9 ssid ℂ ⊆ ℂ
10 1 8 9 reperflem ( 𝐽t ℂ ) ∈ Perf
11 5 10 eqeltrri 𝐽 ∈ Perf