| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 2 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 3 | 1 2 | cnpf | ⊢ ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 4 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 5 | 4 | feq2d | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐹 : 𝑋 ⟶ 𝑌  ↔  𝐹 : ∪  𝐽 ⟶ 𝑌 ) ) | 
						
							| 6 |  | toponuni | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  →  𝑌  =  ∪  𝐾 ) | 
						
							| 7 | 6 | feq3d | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  →  ( 𝐹 : ∪  𝐽 ⟶ 𝑌  ↔  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) ) | 
						
							| 8 | 5 7 | sylan9bb | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹 : 𝑋 ⟶ 𝑌  ↔  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) ) | 
						
							| 9 | 3 8 | imbitrrid | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  𝐹 : 𝑋 ⟶ 𝑌 ) ) | 
						
							| 10 | 9 | 3impia | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) |