Metamath Proof Explorer


Theorem cnpimaex

Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006)

Ref Expression
Assertion cnpimaex ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴𝐾 ∧ ( 𝐹𝑃 ) ∈ 𝐴 ) → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 eqid 𝐾 = 𝐾
3 1 2 iscnp2 ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 𝐽 ) ∧ ( 𝐹 : 𝐽 𝐾 ∧ ∀ 𝑦𝐾 ( ( 𝐹𝑃 ) ∈ 𝑦 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝑦 ) ) ) ) )
4 3 simprbi ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐹 : 𝐽 𝐾 ∧ ∀ 𝑦𝐾 ( ( 𝐹𝑃 ) ∈ 𝑦 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝑦 ) ) ) )
5 eleq2 ( 𝑦 = 𝐴 → ( ( 𝐹𝑃 ) ∈ 𝑦 ↔ ( 𝐹𝑃 ) ∈ 𝐴 ) )
6 sseq2 ( 𝑦 = 𝐴 → ( ( 𝐹𝑥 ) ⊆ 𝑦 ↔ ( 𝐹𝑥 ) ⊆ 𝐴 ) )
7 6 anbi2d ( 𝑦 = 𝐴 → ( ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝐴 ) ) )
8 7 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝐴 ) ) )
9 5 8 imbi12d ( 𝑦 = 𝐴 → ( ( ( 𝐹𝑃 ) ∈ 𝑦 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( 𝐹𝑃 ) ∈ 𝐴 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝐴 ) ) ) )
10 9 rspccv ( ∀ 𝑦𝐾 ( ( 𝐹𝑃 ) ∈ 𝑦 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝑦 ) ) → ( 𝐴𝐾 → ( ( 𝐹𝑃 ) ∈ 𝐴 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝐴 ) ) ) )
11 4 10 simpl2im ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐴𝐾 → ( ( 𝐹𝑃 ) ∈ 𝐴 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝐴 ) ) ) )
12 11 3imp ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴𝐾 ∧ ( 𝐹𝑃 ) ∈ 𝐴 ) → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝐴 ) )