Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
3 |
1 2
|
iscnp2 |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ∧ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
5 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ) |
6 |
|
sseq2 |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
9 |
5 8
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) ) |
10 |
9
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( 𝐴 ∈ 𝐾 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) ) |
11 |
4 10
|
simpl2im |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐴 ∈ 𝐾 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) ) |
12 |
11
|
3imp |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |