| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnpnei.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
cnpnei.2 |
⊢ 𝑌 = ∪ 𝐾 |
| 3 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 |
| 4 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
| 5 |
3 4
|
sseqtrid |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 8 |
|
neii2 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑔 ∈ 𝐾 ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) |
| 9 |
8
|
3ad2antl2 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑔 ∈ 𝐾 ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) |
| 10 |
9
|
ad2ant2rl |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ∃ 𝑔 ∈ 𝐾 ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) |
| 12 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → 𝑔 ∈ 𝐾 ) |
| 13 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 14 |
13
|
snss |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ) |
| 15 |
14
|
biimpri |
⊢ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) |
| 16 |
15
|
adantr |
⊢ ( ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) |
| 17 |
16
|
ad2antll |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) |
| 18 |
11 12 17
|
3jca |
⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑔 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) ) |
| 19 |
18
|
adantll |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑔 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) ) |
| 20 |
|
cnpimaex |
⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑔 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) ) |
| 22 |
|
sstr2 |
⊢ ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝑔 ⊆ 𝑦 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) |
| 23 |
22
|
com12 |
⊢ ( 𝑔 ⊆ 𝑦 → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) |
| 24 |
23
|
ad2antll |
⊢ ( ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) |
| 25 |
24
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) |
| 26 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
| 27 |
26
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → Fun 𝐹 ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → Fun 𝐹 ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → Fun 𝐹 ) |
| 30 |
1
|
eltopss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) |
| 32 |
4
|
sseq2d |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋 ) ) |
| 33 |
32
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋 ) ) |
| 34 |
31 33
|
mpbird |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 35 |
34
|
3adantl2 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 36 |
35
|
adantlr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 37 |
36
|
ad4ant14 |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 38 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝑜 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ↔ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 39 |
29 37 38
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ↔ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 40 |
25 39
|
sylibd |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 41 |
40
|
anim2d |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) → ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 42 |
41
|
reximdva |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 43 |
21 42
|
mpd |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 44 |
10 43
|
rexlimddv |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 45 |
1
|
isneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 46 |
45
|
3ad2antl1 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 48 |
7 44 47
|
mpbir2and |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 49 |
48
|
exp32 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → ( 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 50 |
49
|
ralrimdv |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 51 |
|
simpll3 |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 52 |
|
opnneip |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ) → 𝑜 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 53 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑜 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ 𝑜 ) ) |
| 54 |
53
|
eleq1d |
⊢ ( 𝑦 = 𝑜 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 55 |
54
|
rspcv |
⊢ ( 𝑜 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 56 |
52 55
|
syl |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 57 |
56
|
3com23 |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 58 |
57
|
3expb |
⊢ ( ( 𝐾 ∈ Top ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 59 |
58
|
3ad2antl2 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 60 |
59
|
adantlr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 61 |
|
neii2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) |
| 62 |
61
|
ex |
⊢ ( 𝐽 ∈ Top → ( ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 63 |
62
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 65 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑔 ↔ { 𝐴 } ⊆ 𝑔 ) ) |
| 66 |
65
|
ad3antlr |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑔 ↔ { 𝐴 } ⊆ 𝑔 ) ) |
| 67 |
27
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → Fun 𝐹 ) |
| 68 |
1
|
eltopss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ 𝑋 ) |
| 69 |
68
|
3ad2antl1 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ 𝑋 ) |
| 70 |
4
|
sseq2d |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋 ) ) |
| 71 |
70
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋 ) ) |
| 72 |
71
|
biimpar |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑔 ⊆ 𝑋 ) → 𝑔 ⊆ dom 𝐹 ) |
| 73 |
69 72
|
syldan |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ dom 𝐹 ) |
| 74 |
73
|
ad4ant14 |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ dom 𝐹 ) |
| 75 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝑔 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ↔ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) |
| 76 |
67 74 75
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ↔ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) |
| 77 |
66 76
|
anbi12d |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ↔ ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 78 |
77
|
biimprd |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) → ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 79 |
78
|
reximdva |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 80 |
60 64 79
|
3syld |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 81 |
80
|
exp32 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ( 𝑜 ∈ 𝐾 → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 82 |
81
|
com24 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑜 ∈ 𝐾 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 83 |
82
|
imp |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑜 ∈ 𝐾 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) |
| 84 |
83
|
ralrimiv |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 85 |
1 2
|
iscnp2 |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 86 |
85
|
baib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 87 |
86
|
3expa |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 88 |
87
|
3adantl3 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 89 |
88
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 90 |
51 84 89
|
mpbir2and |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) |
| 91 |
90
|
ex |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ) |
| 92 |
50 91
|
impbid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |