Metamath Proof Explorer


Theorem cnprcl

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis iscnp2.1 𝑋 = 𝐽
Assertion cnprcl ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃𝑋 )

Proof

Step Hyp Ref Expression
1 iscnp2.1 𝑋 = 𝐽
2 eqid 𝐾 = 𝐾
3 1 2 iscnp2 ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋 ) ∧ ( 𝐹 : 𝑋 𝐾 ∧ ∀ 𝑦𝐾 ( ( 𝐹𝑃 ) ∈ 𝑦 → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝐹𝑥 ) ⊆ 𝑦 ) ) ) ) )
4 3 simplbi ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋 ) )
5 4 simp3d ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃𝑋 )