Metamath Proof Explorer


Theorem cnprcl2

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnprcl2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃𝑋 )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 cnprcl ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 𝐽 )
3 2 adantl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃 𝐽 )
4 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
5 4 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑋 = 𝐽 )
6 3 5 eleqtrrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃𝑋 )