Step |
Hyp |
Ref |
Expression |
1 |
|
cnprest.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
cnprest.2 |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
cnptop1 |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) |
4 |
1
|
cnprcl |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ 𝑋 ) |
5 |
3 4
|
jca |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ) |
7 |
|
cnptop1 |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → 𝐽 ∈ Top ) |
8 |
1
|
cnprcl |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → 𝑃 ∈ 𝑋 ) |
9 |
7 8
|
jca |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) |
10 |
9
|
a1i |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ) |
11 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝐵 ) |
12 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝑃 ∈ 𝑋 ) |
13 |
11 12
|
ffvelrnd |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
14 |
13
|
biantrud |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) ) ) |
15 |
|
elin |
⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) ) |
16 |
14 15
|
bitr4di |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ↔ ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) ) ) |
17 |
|
imassrn |
⊢ ( 𝐹 “ 𝑦 ) ⊆ ran 𝐹 |
18 |
11
|
frnd |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ran 𝐹 ⊆ 𝐵 ) |
19 |
17 18
|
sstrid |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐵 ) |
20 |
19
|
biantrud |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ↔ ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐵 ) ) ) |
21 |
|
ssin |
⊢ ( ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐵 ) ↔ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) |
22 |
20 21
|
bitrdi |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ↔ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) |
23 |
22
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
24 |
23
|
rexbidv |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
25 |
16 24
|
imbi12d |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
26 |
25
|
ralbidv |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
27 |
|
vex |
⊢ 𝑥 ∈ V |
28 |
27
|
inex1 |
⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
29 |
28
|
a1i |
⊢ ( ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∩ 𝐵 ) ∈ V ) |
30 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐾 ∈ Top ) |
31 |
|
uniexg |
⊢ ( 𝐾 ∈ Top → ∪ 𝐾 ∈ V ) |
32 |
2 31
|
eqeltrid |
⊢ ( 𝐾 ∈ Top → 𝑌 ∈ V ) |
33 |
30 32
|
syl |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝑌 ∈ V ) |
34 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐵 ⊆ 𝑌 ) |
35 |
33 34
|
ssexd |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐵 ∈ V ) |
36 |
|
elrest |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐵 ∈ V ) → ( 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑧 = ( 𝑥 ∩ 𝐵 ) ) ) |
37 |
30 35 36
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑧 = ( 𝑥 ∩ 𝐵 ) ) ) |
38 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) ) ) |
39 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ↔ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) |
40 |
39
|
anbi2d |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
41 |
40
|
rexbidv |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
42 |
38 41
|
imbi12d |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
43 |
42
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
44 |
29 37 43
|
ralxfr2d |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
45 |
26 44
|
bitr4d |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ↔ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) |
46 |
11 34
|
fssd |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
47 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐽 ∈ Top ) |
48 |
1 2
|
iscnp2 |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) ) |
49 |
48
|
baib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) ) |
50 |
47 30 12 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) ) |
51 |
46 50
|
mpbirand |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) |
52 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
53 |
47 52
|
sylib |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
54 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
55 |
30 54
|
sylib |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
56 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
57 |
55 34 56
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
58 |
|
iscnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) ) |
59 |
53 57 12 58
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) ) |
60 |
11 59
|
mpbirand |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ↔ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) |
61 |
45 51 60
|
3bitr4d |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ) ) |
62 |
61
|
ex |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ) ) ) |
63 |
6 10 62
|
pm5.21ndd |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ) ) |