| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnprest.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 3 | 1 2 | cnpf | ⊢ ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐴  ⊆  𝑋 ) | 
						
							| 6 | 4 5 | fssresd | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ ∪  𝐾 ) | 
						
							| 7 |  | simpl2 | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑦  ∈  𝐾 )  →  𝑃  ∈  𝐴 ) | 
						
							| 8 | 7 | fvresd | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑦  ∈  𝐾 )  →  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑃 )  ∈  𝑦  ↔  ( 𝐹 ‘ 𝑃 )  ∈  𝑦 ) ) | 
						
							| 10 |  | cnpimaex | ⊢ ( ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ∧  𝑦  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑦 )  →  ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  ∧  ( 𝐹  “  𝑥 )  ⊆  𝑦 ) ) | 
						
							| 11 | 10 | 3expia | ⊢ ( ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  𝑦  →  ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  ∧  ( 𝐹  “  𝑥 )  ⊆  𝑦 ) ) ) | 
						
							| 12 | 11 | 3ad2antl3 | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  𝑦  →  ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  ∧  ( 𝐹  “  𝑥 )  ⊆  𝑦 ) ) ) | 
						
							| 13 |  | idd | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝑃  ∈  𝑥  →  𝑃  ∈  𝑥 ) ) | 
						
							| 14 |  | simp2 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 15 | 13 14 | jctird | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝑃  ∈  𝑥  →  ( 𝑃  ∈  𝑥  ∧  𝑃  ∈  𝐴 ) ) ) | 
						
							| 16 |  | elin | ⊢ ( 𝑃  ∈  ( 𝑥  ∩  𝐴 )  ↔  ( 𝑃  ∈  𝑥  ∧  𝑃  ∈  𝐴 ) ) | 
						
							| 17 | 15 16 | imbitrrdi | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝑃  ∈  𝑥  →  𝑃  ∈  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 18 |  | inss1 | ⊢ ( 𝑥  ∩  𝐴 )  ⊆  𝑥 | 
						
							| 19 |  | imass2 | ⊢ ( ( 𝑥  ∩  𝐴 )  ⊆  𝑥  →  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  ( 𝐹  “  𝑥 ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  ( 𝐹  “  𝑥 ) | 
						
							| 21 |  | id | ⊢ ( ( 𝐹  “  𝑥 )  ⊆  𝑦  →  ( 𝐹  “  𝑥 )  ⊆  𝑦 ) | 
						
							| 22 | 20 21 | sstrid | ⊢ ( ( 𝐹  “  𝑥 )  ⊆  𝑦  →  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  𝑦 ) | 
						
							| 23 | 17 22 | anim12d1 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( ( 𝑃  ∈  𝑥  ∧  ( 𝐹  “  𝑥 )  ⊆  𝑦 )  →  ( 𝑃  ∈  ( 𝑥  ∩  𝐴 )  ∧  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  𝑦 ) ) ) | 
						
							| 24 | 23 | reximdv | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  ∧  ( 𝐹  “  𝑥 )  ⊆  𝑦 )  →  ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  ( 𝑥  ∩  𝐴 )  ∧  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  𝑦 ) ) ) | 
						
							| 25 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 26 | 25 | inex1 | ⊢ ( 𝑥  ∩  𝐴 )  ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑥  ∈  𝐽 )  →  ( 𝑥  ∩  𝐴 )  ∈  V ) | 
						
							| 28 |  | cnptop1 | ⊢ ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  𝐽  ∈  Top ) | 
						
							| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐽  ∈  Top ) | 
						
							| 30 | 29 | uniexd | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ∪  𝐽  ∈  V ) | 
						
							| 31 | 5 1 | sseqtrdi | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 32 | 30 31 | ssexd | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐴  ∈  V ) | 
						
							| 33 |  | elrest | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  V )  →  ( 𝑧  ∈  ( 𝐽  ↾t  𝐴 )  ↔  ∃ 𝑥  ∈  𝐽 𝑧  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝑧  ∈  ( 𝐽  ↾t  𝐴 )  ↔  ∃ 𝑥  ∈  𝐽 𝑧  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑧  =  ( 𝑥  ∩  𝐴 ) )  →  𝑧  =  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 36 | 35 | eleq2d | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑧  =  ( 𝑥  ∩  𝐴 ) )  →  ( 𝑃  ∈  𝑧  ↔  𝑃  ∈  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 37 | 35 | imaeq2d | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑧  =  ( 𝑥  ∩  𝐴 ) )  →  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  =  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 38 |  | inss2 | ⊢ ( 𝑥  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 39 |  | resima2 | ⊢ ( ( 𝑥  ∩  𝐴 )  ⊆  𝐴  →  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑥  ∩  𝐴 ) )  =  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 40 | 38 39 | ax-mp | ⊢ ( ( 𝐹  ↾  𝐴 )  “  ( 𝑥  ∩  𝐴 ) )  =  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 41 | 37 40 | eqtrdi | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑧  =  ( 𝑥  ∩  𝐴 ) )  →  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  =  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 42 | 41 | sseq1d | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑧  =  ( 𝑥  ∩  𝐴 ) )  →  ( ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦  ↔  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  𝑦 ) ) | 
						
							| 43 | 36 42 | anbi12d | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑧  =  ( 𝑥  ∩  𝐴 ) )  →  ( ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 )  ↔  ( 𝑃  ∈  ( 𝑥  ∩  𝐴 )  ∧  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  𝑦 ) ) ) | 
						
							| 44 | 27 34 43 | rexxfr2d | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 )  ↔  ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  ( 𝑥  ∩  𝐴 )  ∧  ( 𝐹  “  ( 𝑥  ∩  𝐴 ) )  ⊆  𝑦 ) ) ) | 
						
							| 45 | 24 44 | sylibrd | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  ∧  ( 𝐹  “  𝑥 )  ⊆  𝑦 )  →  ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑦  ∈  𝐾 )  →  ( ∃ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  ∧  ( 𝐹  “  𝑥 )  ⊆  𝑦 )  →  ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 ) ) ) | 
						
							| 47 | 12 46 | syld | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  𝑦  →  ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 ) ) ) | 
						
							| 48 | 9 47 | sylbid | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  𝑦  ∈  𝐾 )  →  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑃 )  ∈  𝑦  →  ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 ) ) ) | 
						
							| 49 | 48 | ralrimiva | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ∀ 𝑦  ∈  𝐾 ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑃 )  ∈  𝑦  →  ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 ) ) ) | 
						
							| 50 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 51 | 29 50 | sylib | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 52 |  | resttopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 53 | 51 5 52 | syl2anc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 54 |  | cnptop2 | ⊢ ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  𝐾  ∈  Top ) | 
						
							| 55 | 54 | 3ad2ant3 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐾  ∈  Top ) | 
						
							| 56 | 2 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 57 | 55 56 | sylib | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 58 |  | iscnp | ⊢ ( ( ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  𝑃  ∈  𝐴 )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ( ( 𝐽  ↾t  𝐴 )  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ ∪  𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑃 )  ∈  𝑦  →  ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 ) ) ) ) ) | 
						
							| 59 | 53 57 14 58 | syl3anc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ( ( 𝐽  ↾t  𝐴 )  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ ∪  𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑃 )  ∈  𝑦  →  ∃ 𝑧  ∈  ( 𝐽  ↾t  𝐴 ) ( 𝑃  ∈  𝑧  ∧  ( ( 𝐹  ↾  𝐴 )  “  𝑧 )  ⊆  𝑦 ) ) ) ) ) | 
						
							| 60 | 6 49 59 | mpbir2and | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑃  ∈  𝐴  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( ( 𝐽  ↾t  𝐴 )  CnP  𝐾 ) ‘ 𝑃 ) ) |