Step |
Hyp |
Ref |
Expression |
1 |
|
cnpfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 CnP 𝐾 ) = ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ) |
2 |
1
|
fveq1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = ( ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ‘ 𝑃 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑣 = 𝑃 → ( 𝑓 ‘ 𝑣 ) = ( 𝑓 ‘ 𝑃 ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑣 = 𝑃 → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 ↔ ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑣 = 𝑃 → ( 𝑣 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑣 = 𝑃 → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑣 = 𝑃 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
8 |
4 7
|
imbi12d |
⊢ ( 𝑣 = 𝑃 → ( ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑣 = 𝑃 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
10 |
9
|
rabbidv |
⊢ ( 𝑣 = 𝑃 → { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
11 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) = ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
12 |
|
ovex |
⊢ ( 𝑌 ↑m 𝑋 ) ∈ V |
13 |
12
|
rabex |
⊢ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ∈ V |
14 |
10 11 13
|
fvmpt |
⊢ ( 𝑃 ∈ 𝑋 → ( ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
15 |
2 14
|
sylan9eq |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
16 |
15
|
3impa |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |