Step |
Hyp |
Ref |
Expression |
1 |
|
cnpwstotbnd.y |
⊢ 𝑌 = ( ( ℂfld ↾s 𝐴 ) ↑s 𝐼 ) |
2 |
|
cnpwstotbnd.d |
⊢ 𝐷 = ( ( dist ‘ 𝑌 ) ↾ ( 𝑋 × 𝑋 ) ) |
3 |
|
eqid |
⊢ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) = ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) |
4 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) = ( Base ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
5 |
|
eqid |
⊢ ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) |
6 |
|
eqid |
⊢ ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) |
7 |
|
eqid |
⊢ ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) = ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
8 |
|
fvexd |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) ∈ V ) |
9 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → 𝐼 ∈ Fin ) |
10 |
|
ovex |
⊢ ( ℂfld ↾s 𝐴 ) ∈ V |
11 |
|
fnconstg |
⊢ ( ( ℂfld ↾s 𝐴 ) ∈ V → ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) Fn 𝐼 ) |
12 |
10 11
|
mp1i |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) Fn 𝐼 ) |
13 |
|
eqid |
⊢ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) |
14 |
|
cnfldms |
⊢ ℂfld ∈ MetSp |
15 |
|
cnex |
⊢ ℂ ∈ V |
16 |
15
|
ssex |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ V ) |
18 |
|
ressms |
⊢ ( ( ℂfld ∈ MetSp ∧ 𝐴 ∈ V ) → ( ℂfld ↾s 𝐴 ) ∈ MetSp ) |
19 |
14 17 18
|
sylancr |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ℂfld ↾s 𝐴 ) ∈ MetSp ) |
20 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) |
21 |
|
eqid |
⊢ ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
22 |
20 21
|
msmet |
⊢ ( ( ℂfld ↾s 𝐴 ) ∈ MetSp → ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
23 |
19 22
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
24 |
10
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) = ( ℂfld ↾s 𝐴 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) = ( ℂfld ↾s 𝐴 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) = ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ) |
27 |
25
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
28 |
27
|
sqxpeqd |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) = ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
29 |
26 28
|
reseq12d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ) |
30 |
27
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( Met ‘ ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) = ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
31 |
23 29 30
|
3eltr4d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) |
32 |
|
totbndbnd |
⊢ ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) → ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) |
33 |
|
eqid |
⊢ ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s 𝐴 ) |
34 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
35 |
33 34
|
ressbas2 |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
37 |
36
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( Met ‘ 𝐴 ) = ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
38 |
23 37
|
eleqtrrd |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ 𝐴 ) ) |
39 |
|
eqid |
⊢ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) |
40 |
39
|
bnd2lem |
⊢ ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ 𝐴 ) ∧ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) → 𝑦 ⊆ 𝐴 ) |
41 |
40
|
ex |
⊢ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) → 𝑦 ⊆ 𝐴 ) ) |
42 |
38 41
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) → 𝑦 ⊆ 𝐴 ) ) |
43 |
32 42
|
syl5 |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) → 𝑦 ⊆ 𝐴 ) ) |
44 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) |
45 |
44
|
cntotbnd |
⊢ ( ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) |
46 |
45
|
a1i |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
47 |
36
|
sseq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ⊆ 𝐴 ↔ 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
48 |
47
|
biimpa |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
49 |
|
xpss12 |
⊢ ( ( 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ∧ 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) → ( 𝑦 × 𝑦 ) ⊆ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
50 |
48 48 49
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑦 × 𝑦 ) ⊆ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
51 |
50
|
resabs1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( 𝑦 × 𝑦 ) ) ) |
52 |
17
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ∈ V ) |
53 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
54 |
33 53
|
ressds |
⊢ ( 𝐴 ∈ V → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ) |
55 |
52 54
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ) |
56 |
55
|
reseq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( 𝑦 × 𝑦 ) ) ) |
57 |
51 56
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ) |
58 |
57
|
eleq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ) ) |
59 |
57
|
eleq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
60 |
46 58 59
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
61 |
60
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ⊆ 𝐴 → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) ) |
62 |
43 42 61
|
pm5.21ndd |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
63 |
29
|
reseq1d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ) |
64 |
63
|
eleq1d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ) ) |
65 |
63
|
eleq1d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
66 |
62 64 65
|
3bitr4d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
67 |
3 4 5 6 7 8 9 12 13 31 66
|
prdsbnd2 |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( TotBnd ‘ 𝑋 ) ↔ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Bnd ‘ 𝑋 ) ) ) |
68 |
|
eqid |
⊢ ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) = ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) |
69 |
1 68
|
pwsval |
⊢ ( ( ( ℂfld ↾s 𝐴 ) ∈ V ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
70 |
10 9 69
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
71 |
70
|
fveq2d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( dist ‘ 𝑌 ) = ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ) |
72 |
71
|
reseq1d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( ( dist ‘ 𝑌 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ) |
73 |
2 72
|
syl5eq |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → 𝐷 = ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ) |
74 |
73
|
eleq1d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( TotBnd ‘ 𝑋 ) ) ) |
75 |
73
|
eleq1d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐷 ∈ ( Bnd ‘ 𝑋 ) ↔ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Bnd ‘ 𝑋 ) ) ) |
76 |
67 74 75
|
3bitr4d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝐷 ∈ ( Bnd ‘ 𝑋 ) ) ) |