| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnpwstotbnd.y |
⊢ 𝑌 = ( ( ℂfld ↾s 𝐴 ) ↑s 𝐼 ) |
| 2 |
|
cnpwstotbnd.d |
⊢ 𝐷 = ( ( dist ‘ 𝑌 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 3 |
|
eqid |
⊢ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) = ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) = ( Base ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) |
| 6 |
|
eqid |
⊢ ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) |
| 7 |
|
eqid |
⊢ ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) = ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
| 8 |
|
fvexd |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) ∈ V ) |
| 9 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → 𝐼 ∈ Fin ) |
| 10 |
|
ovex |
⊢ ( ℂfld ↾s 𝐴 ) ∈ V |
| 11 |
|
fnconstg |
⊢ ( ( ℂfld ↾s 𝐴 ) ∈ V → ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) Fn 𝐼 ) |
| 12 |
10 11
|
mp1i |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) Fn 𝐼 ) |
| 13 |
|
eqid |
⊢ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) |
| 14 |
|
cnfldms |
⊢ ℂfld ∈ MetSp |
| 15 |
|
cnex |
⊢ ℂ ∈ V |
| 16 |
15
|
ssex |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ V ) |
| 18 |
|
ressms |
⊢ ( ( ℂfld ∈ MetSp ∧ 𝐴 ∈ V ) → ( ℂfld ↾s 𝐴 ) ∈ MetSp ) |
| 19 |
14 17 18
|
sylancr |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ℂfld ↾s 𝐴 ) ∈ MetSp ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) |
| 21 |
|
eqid |
⊢ ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 22 |
20 21
|
msmet |
⊢ ( ( ℂfld ↾s 𝐴 ) ∈ MetSp → ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 23 |
19 22
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 24 |
10
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) = ( ℂfld ↾s 𝐴 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) = ( ℂfld ↾s 𝐴 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) = ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 27 |
25
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 28 |
27
|
sqxpeqd |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) = ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 29 |
26 28
|
reseq12d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ) |
| 30 |
27
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( Met ‘ ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) = ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 31 |
23 29 30
|
3eltr4d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) |
| 32 |
|
totbndbnd |
⊢ ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) → ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) |
| 33 |
|
eqid |
⊢ ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s 𝐴 ) |
| 34 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 35 |
33 34
|
ressbas2 |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 37 |
36
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( Met ‘ 𝐴 ) = ( Met ‘ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 38 |
23 37
|
eleqtrrd |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ 𝐴 ) ) |
| 39 |
|
eqid |
⊢ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) |
| 40 |
39
|
bnd2lem |
⊢ ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ 𝐴 ) ∧ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) → 𝑦 ⊆ 𝐴 ) |
| 41 |
40
|
ex |
⊢ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) → 𝑦 ⊆ 𝐴 ) ) |
| 42 |
38 41
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) → 𝑦 ⊆ 𝐴 ) ) |
| 43 |
32 42
|
syl5 |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) → 𝑦 ⊆ 𝐴 ) ) |
| 44 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) |
| 45 |
44
|
cntotbnd |
⊢ ( ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) |
| 46 |
45
|
a1i |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
| 47 |
36
|
sseq2d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ⊆ 𝐴 ↔ 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 48 |
47
|
biimpa |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 49 |
|
xpss12 |
⊢ ( ( 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ∧ 𝑦 ⊆ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) → ( 𝑦 × 𝑦 ) ⊆ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 50 |
48 48 49
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑦 × 𝑦 ) ⊆ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) |
| 51 |
50
|
resabs1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( 𝑦 × 𝑦 ) ) ) |
| 52 |
17
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ∈ V ) |
| 53 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
| 54 |
33 53
|
ressds |
⊢ ( 𝐴 ∈ V → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 55 |
52 54
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 56 |
55
|
reseq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( 𝑦 × 𝑦 ) ) ) |
| 57 |
51 56
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ) |
| 58 |
57
|
eleq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ) ) |
| 59 |
57
|
eleq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ↔ ( ( abs ∘ − ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
| 60 |
46 58 59
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
| 61 |
60
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ⊆ 𝐴 → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) ) |
| 62 |
43 42 61
|
pm5.21ndd |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
| 63 |
29
|
reseq1d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) = ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ) |
| 64 |
63
|
eleq1d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ) ) |
| 65 |
63
|
eleq1d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ℂfld ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( ℂfld ↾s 𝐴 ) ) × ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
| 66 |
62 64 65
|
3bitr4d |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( ( ( dist ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ‘ 𝑥 ) ) ) ) ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
| 67 |
3 4 5 6 7 8 9 12 13 31 66
|
prdsbnd2 |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( TotBnd ‘ 𝑋 ) ↔ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Bnd ‘ 𝑋 ) ) ) |
| 68 |
|
eqid |
⊢ ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) = ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) |
| 69 |
1 68
|
pwsval |
⊢ ( ( ( ℂfld ↾s 𝐴 ) ∈ V ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
| 70 |
10 9 69
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) |
| 71 |
70
|
fveq2d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( dist ‘ 𝑌 ) = ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ) |
| 72 |
71
|
reseq1d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( ( dist ‘ 𝑌 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 73 |
2 72
|
eqtrid |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → 𝐷 = ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 74 |
73
|
eleq1d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( TotBnd ‘ 𝑋 ) ) ) |
| 75 |
73
|
eleq1d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐷 ∈ ( Bnd ‘ 𝑋 ) ↔ ( ( dist ‘ ( ( Scalar ‘ ( ℂfld ↾s 𝐴 ) ) Xs ( 𝐼 × { ( ℂfld ↾s 𝐴 ) } ) ) ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Bnd ‘ 𝑋 ) ) ) |
| 76 |
67 74 75
|
3bitr4d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝐷 ∈ ( Bnd ‘ 𝑋 ) ) ) |