Metamath Proof Explorer


Theorem cnrbas

Description: The set of complex numbers is the base set of the complex left module of complex numbers. (Contributed by AV, 21-Sep-2021)

Ref Expression
Hypothesis cnrlmod.c 𝐶 = ( ringLMod ‘ ℂfld )
Assertion cnrbas ( Base ‘ 𝐶 ) = ℂ

Proof

Step Hyp Ref Expression
1 cnrlmod.c 𝐶 = ( ringLMod ‘ ℂfld )
2 rlmbas ( Base ‘ ℂfld ) = ( Base ‘ ( ringLMod ‘ ℂfld ) )
3 cnfldbas ℂ = ( Base ‘ ℂfld )
4 1 fveq2i ( Base ‘ 𝐶 ) = ( Base ‘ ( ringLMod ‘ ℂfld ) )
5 2 3 4 3eqtr4ri ( Base ‘ 𝐶 ) = ℂ