Step |
Hyp |
Ref |
Expression |
1 |
|
cnrecnv.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) |
2 |
1
|
cnref1o |
⊢ 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ |
3 |
|
f1ocnv |
⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ → ◡ 𝐹 : ℂ –1-1-onto→ ( ℝ × ℝ ) ) |
4 |
|
f1of |
⊢ ( ◡ 𝐹 : ℂ –1-1-onto→ ( ℝ × ℝ ) → ◡ 𝐹 : ℂ ⟶ ( ℝ × ℝ ) ) |
5 |
2 3 4
|
mp2b |
⊢ ◡ 𝐹 : ℂ ⟶ ( ℝ × ℝ ) |
6 |
5
|
a1i |
⊢ ( ⊤ → ◡ 𝐹 : ℂ ⟶ ( ℝ × ℝ ) ) |
7 |
6
|
feqmptd |
⊢ ( ⊤ → ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
8 |
7
|
mptru |
⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) |
9 |
|
df-ov |
⊢ ( ( ℜ ‘ 𝑧 ) 𝐹 ( ℑ ‘ 𝑧 ) ) = ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
10 |
|
recl |
⊢ ( 𝑧 ∈ ℂ → ( ℜ ‘ 𝑧 ) ∈ ℝ ) |
11 |
|
imcl |
⊢ ( 𝑧 ∈ ℂ → ( ℑ ‘ 𝑧 ) ∈ ℝ ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = ( ℜ ‘ 𝑧 ) → ( 𝑥 + ( i · 𝑦 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · 𝑦 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = ( ℑ ‘ 𝑧 ) → ( i · 𝑦 ) = ( i · ( ℑ ‘ 𝑧 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑦 = ( ℑ ‘ 𝑧 ) → ( ( ℜ ‘ 𝑧 ) + ( i · 𝑦 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
15 |
|
ovex |
⊢ ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ∈ V |
16 |
12 14 1 15
|
ovmpo |
⊢ ( ( ( ℜ ‘ 𝑧 ) ∈ ℝ ∧ ( ℑ ‘ 𝑧 ) ∈ ℝ ) → ( ( ℜ ‘ 𝑧 ) 𝐹 ( ℑ ‘ 𝑧 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
17 |
10 11 16
|
syl2anc |
⊢ ( 𝑧 ∈ ℂ → ( ( ℜ ‘ 𝑧 ) 𝐹 ( ℑ ‘ 𝑧 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
18 |
9 17
|
eqtr3id |
⊢ ( 𝑧 ∈ ℂ → ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
19 |
|
replim |
⊢ ( 𝑧 ∈ ℂ → 𝑧 = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
20 |
18 19
|
eqtr4d |
⊢ ( 𝑧 ∈ ℂ → ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) = 𝑧 ) |
21 |
20
|
fveq2d |
⊢ ( 𝑧 ∈ ℂ → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
22 |
10 11
|
opelxpd |
⊢ ( 𝑧 ∈ ℂ → 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ∈ ( ℝ × ℝ ) ) |
23 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ ∧ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ∈ ( ℝ × ℝ ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ) = 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
24 |
2 22 23
|
sylancr |
⊢ ( 𝑧 ∈ ℂ → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ) = 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
25 |
21 24
|
eqtr3d |
⊢ ( 𝑧 ∈ ℂ → ( ◡ 𝐹 ‘ 𝑧 ) = 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
26 |
25
|
mpteq2ia |
⊢ ( 𝑧 ∈ ℂ ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
27 |
8 26
|
eqtri |
⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |