Metamath Proof Explorer


Theorem cnref1o

Description: There is a natural one-to-one mapping from ( RR X. RR ) to CC , where we map <. x , y >. to ( x + (i x. y ) ) . In our construction of the complex numbers, this is in fact our definition_ of CC (see df-c ), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Hypothesis cnref1o.1 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) )
Assertion cnref1o 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ

Proof

Step Hyp Ref Expression
1 cnref1o.1 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) )
2 ovex ( 𝑥 + ( i · 𝑦 ) ) ∈ V
3 1 2 fnmpoi 𝐹 Fn ( ℝ × ℝ )
4 1st2nd2 ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
5 4 fveq2d ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) = ( 𝐹 ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
6 df-ov ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) = ( 𝐹 ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
7 5 6 eqtr4di ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) = ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) )
8 xp1st ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st𝑧 ) ∈ ℝ )
9 xp2nd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd𝑧 ) ∈ ℝ )
10 oveq1 ( 𝑥 = ( 1st𝑧 ) → ( 𝑥 + ( i · 𝑦 ) ) = ( ( 1st𝑧 ) + ( i · 𝑦 ) ) )
11 oveq2 ( 𝑦 = ( 2nd𝑧 ) → ( i · 𝑦 ) = ( i · ( 2nd𝑧 ) ) )
12 11 oveq2d ( 𝑦 = ( 2nd𝑧 ) → ( ( 1st𝑧 ) + ( i · 𝑦 ) ) = ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) )
13 ovex ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) ∈ V
14 10 12 1 13 ovmpo ( ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) → ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) = ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) )
15 8 9 14 syl2anc ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) = ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) )
16 7 15 eqtrd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) = ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) )
17 8 recnd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st𝑧 ) ∈ ℂ )
18 ax-icn i ∈ ℂ
19 9 recnd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd𝑧 ) ∈ ℂ )
20 mulcl ( ( i ∈ ℂ ∧ ( 2nd𝑧 ) ∈ ℂ ) → ( i · ( 2nd𝑧 ) ) ∈ ℂ )
21 18 19 20 sylancr ( 𝑧 ∈ ( ℝ × ℝ ) → ( i · ( 2nd𝑧 ) ) ∈ ℂ )
22 17 21 addcld ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) ∈ ℂ )
23 16 22 eqeltrd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) ∈ ℂ )
24 23 rgen 𝑧 ∈ ( ℝ × ℝ ) ( 𝐹𝑧 ) ∈ ℂ
25 ffnfv ( 𝐹 : ( ℝ × ℝ ) ⟶ ℂ ↔ ( 𝐹 Fn ( ℝ × ℝ ) ∧ ∀ 𝑧 ∈ ( ℝ × ℝ ) ( 𝐹𝑧 ) ∈ ℂ ) )
26 3 24 25 mpbir2an 𝐹 : ( ℝ × ℝ ) ⟶ ℂ
27 8 9 jca ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) )
28 xp1st ( 𝑤 ∈ ( ℝ × ℝ ) → ( 1st𝑤 ) ∈ ℝ )
29 xp2nd ( 𝑤 ∈ ( ℝ × ℝ ) → ( 2nd𝑤 ) ∈ ℝ )
30 28 29 jca ( 𝑤 ∈ ( ℝ × ℝ ) → ( ( 1st𝑤 ) ∈ ℝ ∧ ( 2nd𝑤 ) ∈ ℝ ) )
31 cru ( ( ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) ∧ ( ( 1st𝑤 ) ∈ ℝ ∧ ( 2nd𝑤 ) ∈ ℝ ) ) → ( ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) = ( ( 1st𝑤 ) + ( i · ( 2nd𝑤 ) ) ) ↔ ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
32 27 30 31 syl2an ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) = ( ( 1st𝑤 ) + ( i · ( 2nd𝑤 ) ) ) ↔ ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
33 fveq2 ( 𝑧 = 𝑤 → ( 𝐹𝑧 ) = ( 𝐹𝑤 ) )
34 fveq2 ( 𝑧 = 𝑤 → ( 1st𝑧 ) = ( 1st𝑤 ) )
35 fveq2 ( 𝑧 = 𝑤 → ( 2nd𝑧 ) = ( 2nd𝑤 ) )
36 35 oveq2d ( 𝑧 = 𝑤 → ( i · ( 2nd𝑧 ) ) = ( i · ( 2nd𝑤 ) ) )
37 34 36 oveq12d ( 𝑧 = 𝑤 → ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) = ( ( 1st𝑤 ) + ( i · ( 2nd𝑤 ) ) ) )
38 33 37 eqeq12d ( 𝑧 = 𝑤 → ( ( 𝐹𝑧 ) = ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) ↔ ( 𝐹𝑤 ) = ( ( 1st𝑤 ) + ( i · ( 2nd𝑤 ) ) ) ) )
39 38 16 vtoclga ( 𝑤 ∈ ( ℝ × ℝ ) → ( 𝐹𝑤 ) = ( ( 1st𝑤 ) + ( i · ( 2nd𝑤 ) ) ) )
40 16 39 eqeqan12d ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ ( ( 1st𝑧 ) + ( i · ( 2nd𝑧 ) ) ) = ( ( 1st𝑤 ) + ( i · ( 2nd𝑤 ) ) ) ) )
41 1st2nd2 ( 𝑤 ∈ ( ℝ × ℝ ) → 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ )
42 4 41 eqeqan12d ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( 𝑧 = 𝑤 ↔ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ) )
43 fvex ( 1st𝑧 ) ∈ V
44 fvex ( 2nd𝑧 ) ∈ V
45 43 44 opth ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ↔ ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) )
46 42 45 bitrdi ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( 𝑧 = 𝑤 ↔ ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
47 32 40 46 3bitr4d ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ 𝑧 = 𝑤 ) )
48 47 biimpd ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
49 48 rgen2 𝑧 ∈ ( ℝ × ℝ ) ∀ 𝑤 ∈ ( ℝ × ℝ ) ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 )
50 dff13 ( 𝐹 : ( ℝ × ℝ ) –1-1→ ℂ ↔ ( 𝐹 : ( ℝ × ℝ ) ⟶ ℂ ∧ ∀ 𝑧 ∈ ( ℝ × ℝ ) ∀ 𝑤 ∈ ( ℝ × ℝ ) ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
51 26 49 50 mpbir2an 𝐹 : ( ℝ × ℝ ) –1-1→ ℂ
52 cnre ( 𝑤 ∈ ℂ → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 + ( i · 𝑣 ) ) )
53 oveq1 ( 𝑥 = 𝑢 → ( 𝑥 + ( i · 𝑦 ) ) = ( 𝑢 + ( i · 𝑦 ) ) )
54 oveq2 ( 𝑦 = 𝑣 → ( i · 𝑦 ) = ( i · 𝑣 ) )
55 54 oveq2d ( 𝑦 = 𝑣 → ( 𝑢 + ( i · 𝑦 ) ) = ( 𝑢 + ( i · 𝑣 ) ) )
56 ovex ( 𝑢 + ( i · 𝑣 ) ) ∈ V
57 53 55 1 56 ovmpo ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 𝐹 𝑣 ) = ( 𝑢 + ( i · 𝑣 ) ) )
58 57 eqeq2d ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑤 = ( 𝑢 𝐹 𝑣 ) ↔ 𝑤 = ( 𝑢 + ( i · 𝑣 ) ) ) )
59 58 2rexbiia ( ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) ↔ ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 + ( i · 𝑣 ) ) )
60 52 59 sylibr ( 𝑤 ∈ ℂ → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) )
61 fveq2 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝐹𝑧 ) = ( 𝐹 ‘ ⟨ 𝑢 , 𝑣 ⟩ ) )
62 df-ov ( 𝑢 𝐹 𝑣 ) = ( 𝐹 ‘ ⟨ 𝑢 , 𝑣 ⟩ )
63 61 62 eqtr4di ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝐹𝑧 ) = ( 𝑢 𝐹 𝑣 ) )
64 63 eqeq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝑤 = ( 𝐹𝑧 ) ↔ 𝑤 = ( 𝑢 𝐹 𝑣 ) ) )
65 64 rexxp ( ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 ) ↔ ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) )
66 60 65 sylibr ( 𝑤 ∈ ℂ → ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 ) )
67 66 rgen 𝑤 ∈ ℂ ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 )
68 dffo3 ( 𝐹 : ( ℝ × ℝ ) –onto→ ℂ ↔ ( 𝐹 : ( ℝ × ℝ ) ⟶ ℂ ∧ ∀ 𝑤 ∈ ℂ ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 ) ) )
69 26 67 68 mpbir2an 𝐹 : ( ℝ × ℝ ) –onto→ ℂ
70 df-f1o ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ ↔ ( 𝐹 : ( ℝ × ℝ ) –1-1→ ℂ ∧ 𝐹 : ( ℝ × ℝ ) –onto→ ℂ ) )
71 51 69 70 mpbir2an 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ