Step |
Hyp |
Ref |
Expression |
1 |
|
cnrehmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) |
2 |
|
cnrehmeo.2 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
3 |
|
cnrehmeo.3 |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
4 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
5 |
2 4
|
eqeltri |
⊢ 𝐽 ∈ ( TopOn ‘ ℝ ) |
6 |
5
|
a1i |
⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℝ ) ) |
7 |
3
|
cnfldtop |
⊢ 𝐾 ∈ Top |
8 |
|
cnrest2r |
⊢ ( 𝐾 ∈ Top → ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
9 |
7 8
|
mp1i |
⊢ ( ⊤ → ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
10 |
6 6
|
cnmpt1st |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
11 |
3
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
12 |
2 11
|
eqtri |
⊢ 𝐽 = ( 𝐾 ↾t ℝ ) |
13 |
12
|
oveq2i |
⊢ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) = ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) |
14 |
10 13
|
eleqtrdi |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ) |
15 |
9 14
|
sseldd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
16 |
3
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
17 |
16
|
a1i |
⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
18 |
|
ax-icn |
⊢ i ∈ ℂ |
19 |
18
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
20 |
6 6 17 19
|
cnmpt2c |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ i ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
21 |
6 6
|
cnmpt2nd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
22 |
21 13
|
eleqtrdi |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ) |
23 |
9 22
|
sseldd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
24 |
3
|
mulcn |
⊢ · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
25 |
24
|
a1i |
⊢ ( ⊤ → · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
26 |
6 6 20 23 25
|
cnmpt22f |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( i · 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
27 |
3
|
addcn |
⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
28 |
27
|
a1i |
⊢ ( ⊤ → + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
29 |
6 6 15 26 28
|
cnmpt22f |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
30 |
1 29
|
eqeltrid |
⊢ ( ⊤ → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
31 |
1
|
cnrecnv |
⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
32 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
33 |
32
|
a1i |
⊢ ( ⊤ → ℜ : ℂ ⟶ ℝ ) |
34 |
33
|
feqmptd |
⊢ ( ⊤ → ℜ = ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ 𝑧 ) ) ) |
35 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
36 |
|
ssid |
⊢ ℂ ⊆ ℂ |
37 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
38 |
16
|
toponrestid |
⊢ 𝐾 = ( 𝐾 ↾t ℂ ) |
39 |
3 38 12
|
cncfcn |
⊢ ( ( ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℂ –cn→ ℝ ) = ( 𝐾 Cn 𝐽 ) ) |
40 |
36 37 39
|
mp2an |
⊢ ( ℂ –cn→ ℝ ) = ( 𝐾 Cn 𝐽 ) |
41 |
35 40
|
eleqtri |
⊢ ℜ ∈ ( 𝐾 Cn 𝐽 ) |
42 |
34 41
|
eqeltrrdi |
⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
43 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
44 |
43
|
a1i |
⊢ ( ⊤ → ℑ : ℂ ⟶ ℝ ) |
45 |
44
|
feqmptd |
⊢ ( ⊤ → ℑ = ( 𝑧 ∈ ℂ ↦ ( ℑ ‘ 𝑧 ) ) ) |
46 |
|
imcncf |
⊢ ℑ ∈ ( ℂ –cn→ ℝ ) |
47 |
46 40
|
eleqtri |
⊢ ℑ ∈ ( 𝐾 Cn 𝐽 ) |
48 |
45 47
|
eqeltrrdi |
⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( ℑ ‘ 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
49 |
17 42 48
|
cnmpt1t |
⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) |
50 |
31 49
|
eqeltrid |
⊢ ( ⊤ → ◡ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) |
51 |
|
ishmeo |
⊢ ( 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) ↔ ( 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) ) |
52 |
30 50 51
|
sylanbrc |
⊢ ( ⊤ → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) ) |
53 |
52
|
mptru |
⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) |