| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnrest.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 3 | 1 2 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ⊆  𝑋 ) | 
						
							| 6 | 4 5 | fssresd | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ ∪  𝐾 ) | 
						
							| 7 |  | cnvresima | ⊢ ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑜 )  =  ( ( ◡ 𝐹  “  𝑜 )  ∩  𝐴 ) | 
						
							| 8 |  | cntop1 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  Top ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  ∧  𝑜  ∈  𝐾 )  →  𝐽  ∈  Top ) | 
						
							| 11 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 12 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑋  ∈  𝐽 )  →  𝐴  ∈  V ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( 𝑋  ∈  𝐽  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 14 | 11 13 | sylan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 15 | 8 14 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  ∧  𝑜  ∈  𝐾 )  →  𝐴  ∈  V ) | 
						
							| 17 |  | cnima | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝑜  ∈  𝐾 )  →  ( ◡ 𝐹  “  𝑜 )  ∈  𝐽 ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  ∧  𝑜  ∈  𝐾 )  →  ( ◡ 𝐹  “  𝑜 )  ∈  𝐽 ) | 
						
							| 19 |  | elrestr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  V  ∧  ( ◡ 𝐹  “  𝑜 )  ∈  𝐽 )  →  ( ( ◡ 𝐹  “  𝑜 )  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 20 | 10 16 18 19 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  ∧  𝑜  ∈  𝐾 )  →  ( ( ◡ 𝐹  “  𝑜 )  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 21 | 7 20 | eqeltrid | ⊢ ( ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  ∧  𝑜  ∈  𝐾 )  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑜 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ∀ 𝑜  ∈  𝐾 ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑜 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 23 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 24 | 8 23 | sylib | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 25 |  | resttopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 26 | 24 25 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 27 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐾  ∈  Top ) | 
						
							| 29 | 2 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 30 | 28 29 | sylib | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 31 |  | iscn | ⊢ ( ( ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 )  ↔  ( ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ ∪  𝐾  ∧  ∀ 𝑜  ∈  𝐾 ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑜 )  ∈  ( 𝐽  ↾t  𝐴 ) ) ) ) | 
						
							| 32 | 26 30 31 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 )  ↔  ( ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ ∪  𝐾  ∧  ∀ 𝑜  ∈  𝐾 ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑜 )  ∈  ( 𝐽  ↾t  𝐴 ) ) ) ) | 
						
							| 33 | 6 22 32 | mpbir2and | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 ) ) |