| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) ) |
| 3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 4 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 5 |
3 4
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 6 |
5
|
ffnd |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 Fn ∪ 𝐽 ) |
| 7 |
6
|
a1i |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 Fn ∪ 𝐽 ) ) |
| 8 |
|
simp2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ran 𝐹 ⊆ 𝐵 ) |
| 9 |
7 8
|
jctird |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵 ) ) ) |
| 10 |
|
df-f |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵 ) ) |
| 11 |
9 10
|
imbitrrdi |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) |
| 12 |
2 11
|
jcad |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ) |
| 13 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) → 𝐽 ∈ Top ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐽 ∈ Top ) |
| 15 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 16 |
14 15
|
sylib |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 17 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 18 |
17
|
3adant2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) |
| 21 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) |
| 22 |
16 19 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) |
| 23 |
14 22
|
jca |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) |
| 24 |
23
|
ex |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) → ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ) |
| 25 |
|
vex |
⊢ 𝑥 ∈ V |
| 26 |
25
|
inex1 |
⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
| 27 |
26
|
a1i |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∩ 𝐵 ) ∈ V ) |
| 28 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 29 |
|
toponmax |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝑌 ∈ 𝐾 ) |
| 31 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐵 ⊆ 𝑌 ) |
| 32 |
30 31
|
ssexd |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐵 ∈ V ) |
| 33 |
|
elrest |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐵 ∈ V ) → ( 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑦 = ( 𝑥 ∩ 𝐵 ) ) ) |
| 34 |
28 32 33
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑦 = ( 𝑥 ∩ 𝐵 ) ) ) |
| 35 |
|
imaeq2 |
⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑦 = ( 𝑥 ∩ 𝐵 ) ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ) ) |
| 38 |
27 34 37
|
ralxfr2d |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ) ) |
| 39 |
|
simplrr |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) |
| 40 |
|
ffun |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 → Fun 𝐹 ) |
| 41 |
|
inpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 42 |
39 40 41
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 43 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 |
| 44 |
|
cnvimarndm |
⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 |
| 45 |
43 44
|
sseqtrri |
⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) |
| 46 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ran 𝐹 ⊆ 𝐵 ) |
| 47 |
|
imass2 |
⊢ ( ran 𝐹 ⊆ 𝐵 → ( ◡ 𝐹 “ ran 𝐹 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ ran 𝐹 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
| 49 |
45 48
|
sstrid |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
| 50 |
|
dfss2 |
⊢ ( ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ↔ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 51 |
49 50
|
sylib |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 52 |
42 51
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 53 |
52
|
eleq1d |
⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 54 |
53
|
ralbidva |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 55 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) |
| 56 |
55 31
|
fssd |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 57 |
56
|
biantrurd |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 58 |
38 54 57
|
3bitrrd |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ↔ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 59 |
55
|
biantrurd |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 60 |
58 59
|
bitrd |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 61 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐽 ∈ Top ) |
| 62 |
61 15
|
sylib |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 63 |
|
iscn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 64 |
62 28 63
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 65 |
18
|
adantr |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 66 |
|
iscn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 67 |
62 65 66
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 68 |
60 64 67
|
3bitr4d |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) ) |
| 69 |
68
|
ex |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) ) ) |
| 70 |
12 24 69
|
pm5.21ndd |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) ) |