Metamath Proof Explorer


Theorem cnrlvec

Description: The complex left module of complex numbers is a left vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 21-Sep-2021)

Ref Expression
Hypothesis cnrlmod.c 𝐶 = ( ringLMod ‘ ℂfld )
Assertion cnrlvec 𝐶 ∈ LVec

Proof

Step Hyp Ref Expression
1 cnrlmod.c 𝐶 = ( ringLMod ‘ ℂfld )
2 cndrng fld ∈ DivRing
3 rlmlvec ( ℂfld ∈ DivRing → ( ringLMod ‘ ℂfld ) ∈ LVec )
4 2 3 ax-mp ( ringLMod ‘ ℂfld ) ∈ LVec
5 1 4 eqeltri 𝐶 ∈ LVec