Metamath Proof Explorer


Theorem cnrmtop

Description: A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion cnrmtop ( 𝐽 ∈ CNrm → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 iscnrm ( 𝐽 ∈ CNrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 𝐽 ( 𝐽t 𝑥 ) ∈ Nrm ) )
3 2 simplbi ( 𝐽 ∈ CNrm → 𝐽 ∈ Top )