Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
⊢ < Or ℝ |
2 |
|
eqid |
⊢ { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } = { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } |
3 |
|
f1oiso |
⊢ ( ( 𝑎 : ℝ –1-1-onto→ ℂ ∧ { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } = { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ) → 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) ) |
5 |
|
isoso |
⊢ ( 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) → ( < Or ℝ ↔ { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } Or ℂ ) ) |
6 |
|
soinxp |
⊢ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } Or ℂ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) |
7 |
5 6
|
bitrdi |
⊢ ( 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) → ( < Or ℝ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) ) |
8 |
4 7
|
syl |
⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → ( < Or ℝ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) ) |
9 |
1 8
|
mpbii |
⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) |
10 |
|
cnex |
⊢ ℂ ∈ V |
11 |
10 10
|
xpex |
⊢ ( ℂ × ℂ ) ∈ V |
12 |
11
|
inex2 |
⊢ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) ∈ V |
13 |
|
soeq1 |
⊢ ( 𝑥 = ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) → ( 𝑥 Or ℂ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) ) |
14 |
12 13
|
spcev |
⊢ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ → ∃ 𝑥 𝑥 Or ℂ ) |
15 |
9 14
|
syl |
⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → ∃ 𝑥 𝑥 Or ℂ ) |
16 |
|
rpnnen |
⊢ ℝ ≈ 𝒫 ℕ |
17 |
|
cpnnen |
⊢ ℂ ≈ 𝒫 ℕ |
18 |
16 17
|
entr4i |
⊢ ℝ ≈ ℂ |
19 |
|
bren |
⊢ ( ℝ ≈ ℂ ↔ ∃ 𝑎 𝑎 : ℝ –1-1-onto→ ℂ ) |
20 |
18 19
|
mpbi |
⊢ ∃ 𝑎 𝑎 : ℝ –1-1-onto→ ℂ |
21 |
15 20
|
exlimiiv |
⊢ ∃ 𝑥 𝑥 Or ℂ |