Metamath Proof Explorer


Theorem cnso

Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion cnso 𝑥 𝑥 Or ℂ

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 eqid { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } = { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) }
3 f1oiso ( ( 𝑎 : ℝ –1-1-onto→ ℂ ∧ { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } = { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ) → 𝑎 Isom < , { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) )
4 2 3 mpan2 ( 𝑎 : ℝ –1-1-onto→ ℂ → 𝑎 Isom < , { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) )
5 isoso ( 𝑎 Isom < , { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) → ( < Or ℝ ↔ { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } Or ℂ ) )
6 soinxp ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } Or ℂ ↔ ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ )
7 5 6 bitrdi ( 𝑎 Isom < , { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) → ( < Or ℝ ↔ ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) )
8 4 7 syl ( 𝑎 : ℝ –1-1-onto→ ℂ → ( < Or ℝ ↔ ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) )
9 1 8 mpbii ( 𝑎 : ℝ –1-1-onto→ ℂ → ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ )
10 cnex ℂ ∈ V
11 10 10 xpex ( ℂ × ℂ ) ∈ V
12 11 inex2 ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) ∈ V
13 soeq1 ( 𝑥 = ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) → ( 𝑥 Or ℂ ↔ ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) )
14 12 13 spcev ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎𝑑 ) ∧ 𝑐 = ( 𝑎𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ → ∃ 𝑥 𝑥 Or ℂ )
15 9 14 syl ( 𝑎 : ℝ –1-1-onto→ ℂ → ∃ 𝑥 𝑥 Or ℂ )
16 rpnnen ℝ ≈ 𝒫 ℕ
17 cpnnen ℂ ≈ 𝒫 ℕ
18 16 17 entr4i ℝ ≈ ℂ
19 bren ( ℝ ≈ ℂ ↔ ∃ 𝑎 𝑎 : ℝ –1-1-onto→ ℂ )
20 18 19 mpbi 𝑎 𝑎 : ℝ –1-1-onto→ ℂ
21 15 20 exlimiiv 𝑥 𝑥 Or ℂ