Metamath Proof Explorer


Theorem cnsrng

Description: The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion cnsrng fld ∈ *-Ring

Proof

Step Hyp Ref Expression
1 cnfldbas ℂ = ( Base ‘ ℂfld )
2 1 a1i ( ⊤ → ℂ = ( Base ‘ ℂfld ) )
3 cnfldadd + = ( +g ‘ ℂfld )
4 3 a1i ( ⊤ → + = ( +g ‘ ℂfld ) )
5 cnfldmul · = ( .r ‘ ℂfld )
6 5 a1i ( ⊤ → · = ( .r ‘ ℂfld ) )
7 cnfldcj ∗ = ( *𝑟 ‘ ℂfld )
8 7 a1i ( ⊤ → ∗ = ( *𝑟 ‘ ℂfld ) )
9 cnring fld ∈ Ring
10 9 a1i ( ⊤ → ℂfld ∈ Ring )
11 cjcl ( 𝑥 ∈ ℂ → ( ∗ ‘ 𝑥 ) ∈ ℂ )
12 11 adantl ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ 𝑥 ) ∈ ℂ )
13 cjadd ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) )
14 13 3adant1 ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) )
15 mulcom ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) )
16 15 fveq2d ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ∗ ‘ ( 𝑦 · 𝑥 ) ) )
17 cjmul ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ ( 𝑦 · 𝑥 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) )
18 17 ancoms ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑦 · 𝑥 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) )
19 16 18 eqtrd ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) )
20 19 3adant1 ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) )
21 cjcj ( 𝑥 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 )
22 21 adantl ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 )
23 2 4 6 8 10 12 14 20 22 issrngd ( ⊤ → ℂfld ∈ *-Ring )
24 23 mptru fld ∈ *-Ring