| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 2 |
1
|
a1i |
⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 3 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 4 |
3
|
a1i |
⊢ ( ⊤ → + = ( +g ‘ ℂfld ) ) |
| 5 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 6 |
5
|
a1i |
⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
| 7 |
|
cnfldcj |
⊢ ∗ = ( *𝑟 ‘ ℂfld ) |
| 8 |
7
|
a1i |
⊢ ( ⊤ → ∗ = ( *𝑟 ‘ ℂfld ) ) |
| 9 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 10 |
9
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Ring ) |
| 11 |
|
cjcl |
⊢ ( 𝑥 ∈ ℂ → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
| 12 |
11
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
| 13 |
|
cjadd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) |
| 14 |
13
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) |
| 15 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ∗ ‘ ( 𝑦 · 𝑥 ) ) ) |
| 17 |
|
cjmul |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ ( 𝑦 · 𝑥 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 18 |
17
|
ancoms |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑦 · 𝑥 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 19 |
16 18
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 20 |
19
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 21 |
|
cjcj |
⊢ ( 𝑥 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) |
| 22 |
21
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) |
| 23 |
2 4 6 8 10 12 14 20 22
|
issrngd |
⊢ ( ⊤ → ℂfld ∈ *-Ring ) |
| 24 |
23
|
mptru |
⊢ ℂfld ∈ *-Ring |