Metamath Proof Explorer


Theorem cnsscnp

Description: The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis cnsscnp.1 𝑋 = 𝐽
Assertion cnsscnp ( 𝑃𝑋 → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 cnsscnp.1 𝑋 = 𝐽
2 1 cncnpi ( ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑃𝑋 ) → 𝑓 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) )
3 2 expcom ( 𝑃𝑋 → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝑓 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) )
4 3 ssrdv ( 𝑃𝑋 → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) )