Step |
Hyp |
Ref |
Expression |
1 |
|
cnlmod.w |
⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) |
2 |
1
|
cnlmod |
⊢ 𝑊 ∈ LMod |
3 |
|
cnfldex |
⊢ ℂfld ∈ V |
4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
5 |
4
|
ressid |
⊢ ( ℂfld ∈ V → ( ℂfld ↾s ℂ ) = ℂfld ) |
6 |
3 5
|
ax-mp |
⊢ ( ℂfld ↾s ℂ ) = ℂfld |
7 |
6
|
eqcomi |
⊢ ℂfld = ( ℂfld ↾s ℂ ) |
8 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
9 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
10 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
12 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
13 |
8 9 10 11 12
|
cnsubrglem |
⊢ ℂ ∈ ( SubRing ‘ ℂfld ) |
14 |
|
qdass |
⊢ ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , ℂfld 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) |
15 |
1 14
|
eqtri |
⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , ℂfld 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) |
16 |
15
|
lmodsca |
⊢ ( ℂfld ∈ V → ℂfld = ( Scalar ‘ 𝑊 ) ) |
17 |
3 16
|
ax-mp |
⊢ ℂfld = ( Scalar ‘ 𝑊 ) |
18 |
17
|
isclmi |
⊢ ( ( 𝑊 ∈ LMod ∧ ℂfld = ( ℂfld ↾s ℂ ) ∧ ℂ ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod ) |
19 |
2 7 13 18
|
mp3an |
⊢ 𝑊 ∈ ℂMod |
20 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
21 |
17
|
islvec |
⊢ ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ℂfld ∈ DivRing ) ) |
22 |
2 20 21
|
mpbir2an |
⊢ 𝑊 ∈ LVec |
23 |
19 22
|
elini |
⊢ 𝑊 ∈ ( ℂMod ∩ LVec ) |
24 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
25 |
23 24
|
eleqtrri |
⊢ 𝑊 ∈ ℂVec |