Metamath Proof Explorer


Theorem cnstrcvs

Description: The set of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
Assertion cnstrcvs 𝑊 ∈ ℂVec

Proof

Step Hyp Ref Expression
1 cnlmod.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
2 1 cnlmod 𝑊 ∈ LMod
3 cnfldex fld ∈ V
4 cnfldbas ℂ = ( Base ‘ ℂfld )
5 4 ressid ( ℂfld ∈ V → ( ℂflds ℂ ) = ℂfld )
6 3 5 ax-mp ( ℂflds ℂ ) = ℂfld
7 6 eqcomi fld = ( ℂflds ℂ )
8 id ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ )
9 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
10 negcl ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ )
11 ax-1cn 1 ∈ ℂ
12 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
13 8 9 10 11 12 cnsubrglem ℂ ∈ ( SubRing ‘ ℂfld )
14 qdass ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
15 1 14 eqtri 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
16 15 lmodsca ( ℂfld ∈ V → ℂfld = ( Scalar ‘ 𝑊 ) )
17 3 16 ax-mp fld = ( Scalar ‘ 𝑊 )
18 17 isclmi ( ( 𝑊 ∈ LMod ∧ ℂfld = ( ℂflds ℂ ) ∧ ℂ ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod )
19 2 7 13 18 mp3an 𝑊 ∈ ℂMod
20 cndrng fld ∈ DivRing
21 17 islvec ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ℂfld ∈ DivRing ) )
22 2 20 21 mpbir2an 𝑊 ∈ LVec
23 19 22 elini 𝑊 ∈ ( ℂMod ∩ LVec )
24 df-cvs ℂVec = ( ℂMod ∩ LVec )
25 23 24 eleqtrri 𝑊 ∈ ℂVec