| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnsubglem.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
| 2 |
|
cnsubglem.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) |
| 3 |
|
cnsubglem.3 |
⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) |
| 4 |
|
cnsubrglem.4 |
⊢ 1 ∈ 𝐴 |
| 5 |
|
cnsubrglem.5 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 6 |
|
cnsubrglem.6 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ 𝐴 ) |
| 7 |
1 2 3 4 5
|
cnsubrglem |
⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |
| 8 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 9 |
|
eqid |
⊢ ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s 𝐴 ) |
| 10 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 11 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
| 12 |
9 10 11
|
issubdrg |
⊢ ( ( ℂfld ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ ℂfld ) ) → ( ( ℂfld ↾s 𝐴 ) ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 13 |
8 7 12
|
mp2an |
⊢ ( ( ℂfld ↾s 𝐴 ) ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 14 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 15 |
1
|
ssriv |
⊢ 𝐴 ⊆ ℂ |
| 16 |
|
ssdif |
⊢ ( 𝐴 ⊆ ℂ → ( 𝐴 ∖ { 0 } ) ⊆ ( ℂ ∖ { 0 } ) ) |
| 17 |
15 16
|
ax-mp |
⊢ ( 𝐴 ∖ { 0 } ) ⊆ ( ℂ ∖ { 0 } ) |
| 18 |
17
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 19 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 20 |
19 10 8
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 21 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
| 22 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 23 |
19 20 21 22 11
|
ringinvdv |
⊢ ( ( ℂfld ∈ Ring ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 24 |
14 18 23
|
sylancr |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 25 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
| 26 |
25 6
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → ( 1 / 𝑥 ) ∈ 𝐴 ) |
| 27 |
24 26
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 28 |
13 27
|
mprgbir |
⊢ ( ℂfld ↾s 𝐴 ) ∈ DivRing |
| 29 |
7 28
|
pm3.2i |
⊢ ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐴 ) ∈ DivRing ) |