Metamath Proof Explorer


Theorem cnsubglem

Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses cnsubglem.1 ( 𝑥𝐴𝑥 ∈ ℂ )
cnsubglem.2 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 )
cnsubglem.3 ( 𝑥𝐴 → - 𝑥𝐴 )
cnsubglem.4 𝐵𝐴
Assertion cnsubglem 𝐴 ∈ ( SubGrp ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 cnsubglem.1 ( 𝑥𝐴𝑥 ∈ ℂ )
2 cnsubglem.2 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 )
3 cnsubglem.3 ( 𝑥𝐴 → - 𝑥𝐴 )
4 cnsubglem.4 𝐵𝐴
5 1 ssriv 𝐴 ⊆ ℂ
6 4 ne0ii 𝐴 ≠ ∅
7 2 ralrimiva ( 𝑥𝐴 → ∀ 𝑦𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 )
8 cnfldneg ( 𝑥 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 )
9 1 8 syl ( 𝑥𝐴 → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 )
10 9 3 eqeltrd ( 𝑥𝐴 → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 )
11 7 10 jca ( 𝑥𝐴 → ( ∀ 𝑦𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) )
12 11 rgen 𝑥𝐴 ( ∀ 𝑦𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 )
13 cnring fld ∈ Ring
14 ringgrp ( ℂfld ∈ Ring → ℂfld ∈ Grp )
15 cnfldbas ℂ = ( Base ‘ ℂfld )
16 cnfldadd + = ( +g ‘ ℂfld )
17 eqid ( invg ‘ ℂfld ) = ( invg ‘ ℂfld )
18 15 16 17 issubg2 ( ℂfld ∈ Grp → ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 ( ∀ 𝑦𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) )
19 13 14 18 mp2b ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 ( ∀ 𝑦𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) )
20 5 6 12 19 mpbir3an 𝐴 ∈ ( SubGrp ‘ ℂfld )