| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnsubglem.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
| 2 |
|
cnsubglem.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) |
| 3 |
|
cnsubglem.3 |
⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) |
| 4 |
|
cnsubglem.4 |
⊢ 𝐵 ∈ 𝐴 |
| 5 |
1
|
ssriv |
⊢ 𝐴 ⊆ ℂ |
| 6 |
4
|
ne0ii |
⊢ 𝐴 ≠ ∅ |
| 7 |
2
|
ralrimiva |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ) |
| 8 |
|
cnfldneg |
⊢ ( 𝑥 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 ) |
| 9 |
1 8
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 ) |
| 10 |
9 3
|
eqeltrd |
⊢ ( 𝑥 ∈ 𝐴 → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 11 |
7 10
|
jca |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 12 |
11
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 13 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 14 |
|
ringgrp |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) |
| 15 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 16 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 17 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
| 18 |
15 16 17
|
issubg2 |
⊢ ( ℂfld ∈ Grp → ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) ) |
| 19 |
13 14 18
|
mp2b |
⊢ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 20 |
5 6 12 19
|
mpbir3an |
⊢ 𝐴 ∈ ( SubGrp ‘ ℂfld ) |