Step |
Hyp |
Ref |
Expression |
1 |
|
cnsubglem.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
2 |
|
cnsubglem.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) |
3 |
|
cnsubmlem.3 |
⊢ 0 ∈ 𝐴 |
4 |
1
|
ssriv |
⊢ 𝐴 ⊆ ℂ |
5 |
2
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 |
6 |
|
cnring |
⊢ ℂfld ∈ Ring |
7 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
9 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
10 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
11 |
8 9 10
|
issubm |
⊢ ( ℂfld ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ) ) ) |
12 |
6 7 11
|
mp2b |
⊢ ( 𝐴 ∈ ( SubMnd ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ) ) |
13 |
4 3 5 12
|
mpbir3an |
⊢ 𝐴 ∈ ( SubMnd ‘ ℂfld ) |