Step |
Hyp |
Ref |
Expression |
1 |
|
ssdif0 |
⊢ ( 𝑅 ⊆ ℝ ↔ ( 𝑅 ∖ ℝ ) = ∅ ) |
2 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → 𝑅 ⊆ ℝ ) |
3 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → ℝ ⊆ 𝑅 ) |
4 |
2 3
|
eqssd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → 𝑅 = ℝ ) |
5 |
4
|
orcd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
6 |
1 5
|
sylan2br |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑅 ∖ ℝ ) = ∅ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
7 |
|
n0 |
⊢ ( ( 𝑅 ∖ ℝ ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) |
9 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
10 |
9
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 ⊆ ℂ ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 ⊆ ℂ ) |
12 |
|
replim |
⊢ ( 𝑦 ∈ ℂ → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
13 |
12
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) |
15 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ℝ ⊆ 𝑅 ) |
16 |
|
recl |
⊢ ( 𝑦 ∈ ℂ → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
17 |
16
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
18 |
15 17
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℜ ‘ 𝑦 ) ∈ 𝑅 ) |
19 |
|
ax-icn |
⊢ i ∈ ℂ |
20 |
19
|
a1i |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i ∈ ℂ ) |
21 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → 𝑥 ∈ 𝑅 ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 ∈ 𝑅 ) |
23 |
11 22
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 ∈ ℂ ) |
24 |
|
imcl |
⊢ ( 𝑥 ∈ ℂ → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
27 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ¬ 𝑥 ∈ ℝ ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ¬ 𝑥 ∈ ℝ ) |
29 |
|
reim0b |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
30 |
29
|
necon3bbid |
⊢ ( 𝑥 ∈ ℂ → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
31 |
23 30
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
32 |
28 31
|
mpbid |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ≠ 0 ) |
33 |
20 26 32
|
divcan4d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) / ( ℑ ‘ 𝑥 ) ) = i ) |
34 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
35 |
19 26 34
|
sylancr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
36 |
35 26 32
|
divrecd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) / ( ℑ ‘ 𝑥 ) ) = ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ) |
37 |
33 36
|
eqtr3d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i = ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ) |
38 |
23
|
recld |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
39 |
38
|
recnd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℜ ‘ 𝑥 ) ∈ ℂ ) |
40 |
23 39
|
negsubd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) = ( 𝑥 − ( ℜ ‘ 𝑥 ) ) ) |
41 |
|
replim |
⊢ ( 𝑥 ∈ ℂ → 𝑥 = ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) ) |
42 |
23 41
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 = ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) ) |
43 |
42
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 − ( ℜ ‘ 𝑥 ) ) = ( ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) − ( ℜ ‘ 𝑥 ) ) ) |
44 |
39 35
|
pncan2d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) − ( ℜ ‘ 𝑥 ) ) = ( i · ( ℑ ‘ 𝑥 ) ) ) |
45 |
40 43 44
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) = ( i · ( ℑ ‘ 𝑥 ) ) ) |
46 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ℝ ⊆ 𝑅 ) |
47 |
38
|
renegcld |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → - ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
48 |
46 47
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → - ( ℜ ‘ 𝑥 ) ∈ 𝑅 ) |
49 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
50 |
49
|
subrgacl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ 𝑅 ∧ - ( ℜ ‘ 𝑥 ) ∈ 𝑅 ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) ∈ 𝑅 ) |
51 |
8 22 48 50
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) ∈ 𝑅 ) |
52 |
45 51
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) |
53 |
25 32
|
rereccld |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
54 |
46 53
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) |
55 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
56 |
55
|
subrgmcl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( i · ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ∧ ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) → ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ∈ 𝑅 ) |
57 |
8 52 54 56
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ∈ 𝑅 ) |
58 |
37 57
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i ∈ 𝑅 ) |
59 |
58
|
adantrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → i ∈ 𝑅 ) |
60 |
|
imcl |
⊢ ( 𝑦 ∈ ℂ → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
61 |
60
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
62 |
15 61
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℑ ‘ 𝑦 ) ∈ 𝑅 ) |
63 |
55
|
subrgmcl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ i ∈ 𝑅 ∧ ( ℑ ‘ 𝑦 ) ∈ 𝑅 ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) |
64 |
14 59 62 63
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) |
65 |
49
|
subrgacl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℜ ‘ 𝑦 ) ∈ 𝑅 ∧ ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) → ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ 𝑅 ) |
66 |
14 18 64 65
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ 𝑅 ) |
67 |
13 66
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑦 ∈ 𝑅 ) |
68 |
67
|
expr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑦 ∈ ℂ → 𝑦 ∈ 𝑅 ) ) |
69 |
68
|
ssrdv |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ℂ ⊆ 𝑅 ) |
70 |
11 69
|
eqssd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 = ℂ ) |
71 |
70
|
olcd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
72 |
71
|
ex |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
73 |
72
|
exlimdv |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
74 |
73
|
imp |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
75 |
7 74
|
sylan2b |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑅 ∖ ℝ ) ≠ ∅ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
76 |
6 75
|
pm2.61dane |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
77 |
|
elprg |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ( 𝑅 ∈ { ℝ , ℂ } ↔ ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
78 |
77
|
adantr |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑅 ∈ { ℝ , ℂ } ↔ ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
79 |
76 78
|
mpbird |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → 𝑅 ∈ { ℝ , ℂ } ) |