Step |
Hyp |
Ref |
Expression |
1 |
|
cnsubglem.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
2 |
|
cnsubglem.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) |
3 |
|
cnsubglem.3 |
⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) |
4 |
|
cnsubrglem.4 |
⊢ 1 ∈ 𝐴 |
5 |
|
cnsubrglem.5 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
6 |
1 2 3 4
|
cnsubglem |
⊢ 𝐴 ∈ ( SubGrp ‘ ℂfld ) |
7 |
1
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
8 |
1
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
9 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
10 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ℂ ↔ 𝑦 ∈ ℂ ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) ↔ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ ) ) ) |
12 |
11
|
spvv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ ) ) |
13 |
8 12
|
ax-mp |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ ) |
14 |
13
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℂ ) |
15 |
7 14
|
jca |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
16 |
|
ovmpot |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
18 |
17
|
eqcomd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
19 |
18
|
eleq1d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) ) |
20 |
5 19
|
mpbid |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) |
21 |
20
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 |
22 |
|
cnring |
⊢ ℂfld ∈ Ring |
23 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
24 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
25 |
|
mpocnfldmul |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) |
26 |
23 24 25
|
issubrg2 |
⊢ ( ℂfld ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) ) ) |
27 |
22 26
|
ax-mp |
⊢ ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) ) |
28 |
6 4 21 27
|
mpbir3an |
⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |