Step |
Hyp |
Ref |
Expression |
1 |
|
cnsubglem.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
2 |
|
cnsubglem.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) |
3 |
|
cnsubglem.3 |
⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) |
4 |
|
cnsubrglem.4 |
⊢ 1 ∈ 𝐴 |
5 |
|
cnsubrglem.5 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
6 |
1 2 3 4
|
cnsubglem |
⊢ 𝐴 ∈ ( SubGrp ‘ ℂfld ) |
7 |
5
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 |
8 |
|
cnring |
⊢ ℂfld ∈ Ring |
9 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
10 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
11 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
12 |
9 10 11
|
issubrg2 |
⊢ ( ℂfld ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |
13 |
8 12
|
ax-mp |
⊢ ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) |
14 |
6 4 7 13
|
mpbir3an |
⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |