| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntop1 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  Top ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐽  ∈  Top ) | 
						
							| 3 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 4 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 5 | 3 4 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 7 | 6 | ffnd | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  Fn  ∪  𝐽 ) | 
						
							| 8 |  | fnsnfv | ⊢ ( ( 𝐹  Fn  ∪  𝐽  ∧  𝑥  ∈  ∪  𝐽 )  →  { ( 𝐹 ‘ 𝑥 ) }  =  ( 𝐹  “  { 𝑥 } ) ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  { ( 𝐹 ‘ 𝑥 ) }  =  ( 𝐹  “  { 𝑥 } ) ) | 
						
							| 10 | 9 | imaeq2d | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ( ◡ 𝐹  “  ( 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 11 |  | simpl2 | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 12 | 6 | fdmd | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  dom  𝐹  =  ∪  𝐽 ) | 
						
							| 13 |  | f1dm | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌  →  dom  𝐹  =  𝑋 ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  dom  𝐹  =  𝑋 ) | 
						
							| 15 | 12 14 | eqtr3d | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ∪  𝐽  =  𝑋 ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑥  ∈  ∪  𝐽  ↔  𝑥  ∈  𝑋 ) ) | 
						
							| 17 | 16 | biimpa | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  𝑥  ∈  𝑋 ) | 
						
							| 18 | 17 | snssd | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  { 𝑥 }  ⊆  𝑋 ) | 
						
							| 19 |  | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  { 𝑥 }  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  { 𝑥 } ) )  =  { 𝑥 } ) | 
						
							| 20 | 11 18 19 | syl2anc | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  ( ◡ 𝐹  “  ( 𝐹  “  { 𝑥 } ) )  =  { 𝑥 } ) | 
						
							| 21 | 10 20 | eqtrd | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  { 𝑥 } ) | 
						
							| 22 |  | simpl3 | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 23 |  | simpl1 | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  𝐾  ∈  Fre ) | 
						
							| 24 | 6 | ffvelcdmda | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ∪  𝐾 ) | 
						
							| 25 | 4 | t1sncld | ⊢ ( ( 𝐾  ∈  Fre  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ∪  𝐾 )  →  { ( 𝐹 ‘ 𝑥 ) }  ∈  ( Clsd ‘ 𝐾 ) ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  { ( 𝐹 ‘ 𝑥 ) }  ∈  ( Clsd ‘ 𝐾 ) ) | 
						
							| 27 |  | cnclima | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  { ( 𝐹 ‘ 𝑥 ) }  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 28 | 22 26 27 | syl2anc | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 29 | 21 28 | eqeltrrd | ⊢ ( ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ∪  𝐽 )  →  { 𝑥 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ∀ 𝑥  ∈  ∪  𝐽 { 𝑥 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 31 | 3 | ist1 | ⊢ ( 𝐽  ∈  Fre  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  ∪  𝐽 { 𝑥 }  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 32 | 2 30 31 | sylanbrc | ⊢ ( ( 𝐾  ∈  Fre  ∧  𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐽  ∈  Fre ) |