Step |
Hyp |
Ref |
Expression |
1 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Top ) |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
5 |
3 4
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
7 |
6
|
ffnd |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 Fn ∪ 𝐽 ) |
8 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) |
9 |
7 8
|
sylan |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) |
10 |
9
|
imaeq2d |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 } ) ) ) |
11 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
12 |
6
|
fdmd |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → dom 𝐹 = ∪ 𝐽 ) |
13 |
|
f1dm |
⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → dom 𝐹 = 𝑋 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → dom 𝐹 = 𝑋 ) |
15 |
12 14
|
eqtr3d |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∪ 𝐽 = 𝑋 ) |
16 |
15
|
eleq2d |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ 𝑋 ) ) |
17 |
16
|
biimpa |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ 𝑋 ) |
18 |
17
|
snssd |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { 𝑥 } ⊆ 𝑋 ) |
19 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ { 𝑥 } ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 } ) ) = { 𝑥 } ) |
20 |
11 18 19
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 } ) ) = { 𝑥 } ) |
21 |
10 20
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = { 𝑥 } ) |
22 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
23 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐾 ∈ Fre ) |
24 |
6
|
ffvelrnda |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝐾 ) |
25 |
4
|
t1sncld |
⊢ ( ( 𝐾 ∈ Fre ∧ ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝐾 ) → { ( 𝐹 ‘ 𝑥 ) } ∈ ( Clsd ‘ 𝐾 ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } ∈ ( Clsd ‘ 𝐾 ) ) |
27 |
|
cnclima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ { ( 𝐹 ‘ 𝑥 ) } ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
28 |
22 26 27
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
29 |
21 28
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
30 |
29
|
ralrimiva |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑥 ∈ ∪ 𝐽 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
31 |
3
|
ist1 |
⊢ ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐽 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
32 |
2 30 31
|
sylanbrc |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Fre ) |