| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrcmnd.z |
⊢ 𝑍 = ( 𝑀 ↾s ( Cntr ‘ 𝑀 ) ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 3 |
2
|
cntrss |
⊢ ( Cntr ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) |
| 4 |
1 2
|
ressbas2 |
⊢ ( ( Cntr ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) → ( Cntr ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ) |
| 5 |
3 4
|
mp1i |
⊢ ( 𝑀 ∈ Mnd → ( Cntr ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ) |
| 6 |
|
fvex |
⊢ ( Cntr ‘ 𝑀 ) ∈ V |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 8 |
1 7
|
ressplusg |
⊢ ( ( Cntr ‘ 𝑀 ) ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) |
| 9 |
6 8
|
mp1i |
⊢ ( 𝑀 ∈ Mnd → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) |
| 10 |
|
eqid |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) |
| 11 |
2 10
|
cntrval |
⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = ( Cntr ‘ 𝑀 ) |
| 12 |
|
ssid |
⊢ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) |
| 13 |
2 10
|
cntzsubm |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 14 |
12 13
|
mpan2 |
⊢ ( 𝑀 ∈ Mnd → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 15 |
11 14
|
eqeltrrid |
⊢ ( 𝑀 ∈ Mnd → ( Cntr ‘ 𝑀 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 16 |
1
|
submmnd |
⊢ ( ( Cntr ‘ 𝑀 ) ∈ ( SubMnd ‘ 𝑀 ) → 𝑍 ∈ Mnd ) |
| 17 |
15 16
|
syl |
⊢ ( 𝑀 ∈ Mnd → 𝑍 ∈ Mnd ) |
| 18 |
|
simp2 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → 𝑥 ∈ ( Cntr ‘ 𝑀 ) ) |
| 19 |
|
simp3 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) |
| 20 |
3 19
|
sselid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) |
| 21 |
|
eqid |
⊢ ( Cntr ‘ 𝑀 ) = ( Cntr ‘ 𝑀 ) |
| 22 |
2 7 21
|
cntri |
⊢ ( ( 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 23 |
18 20 22
|
syl2anc |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 24 |
5 9 17 23
|
iscmnd |
⊢ ( 𝑀 ∈ Mnd → 𝑍 ∈ CMnd ) |