Metamath Proof Explorer


Theorem cntri

Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses cntri.b 𝐵 = ( Base ‘ 𝑀 )
cntri.p + = ( +g𝑀 )
cntri.z 𝑍 = ( Cntr ‘ 𝑀 )
Assertion cntri ( ( 𝑋𝑍𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cntri.b 𝐵 = ( Base ‘ 𝑀 )
2 cntri.p + = ( +g𝑀 )
3 cntri.z 𝑍 = ( Cntr ‘ 𝑀 )
4 eqid ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 )
5 1 4 cntrval ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) = ( Cntr ‘ 𝑀 )
6 3 5 eqtr4i 𝑍 = ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 )
7 6 eleq2i ( 𝑋𝑍𝑋 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) )
8 2 4 cntzi ( ( 𝑋 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ∧ 𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
9 7 8 sylanb ( ( 𝑋𝑍𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )