Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cntri.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
cntri.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
cntri.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | ||
Assertion | cntri | ⊢ ( ( 𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntri.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
2 | cntri.p | ⊢ + = ( +g ‘ 𝑀 ) | |
3 | cntri.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | |
4 | eqid | ⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) | |
5 | 1 4 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) |
6 | 3 5 | eqtr4i | ⊢ 𝑍 = ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) |
7 | 6 | eleq2i | ⊢ ( 𝑋 ∈ 𝑍 ↔ 𝑋 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ) |
8 | 2 4 | cntzi | ⊢ ( ( 𝑋 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
9 | 7 8 | sylanb | ⊢ ( ( 𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |