Metamath Proof Explorer


Theorem cntrnsg

Description: The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypothesis cntrnsg.z 𝑍 = ( Cntr ‘ 𝑀 )
Assertion cntrnsg ( 𝑀 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 cntrnsg.z 𝑍 = ( Cntr ‘ 𝑀 )
2 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
3 eqid ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 )
4 2 3 cntrval ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = ( Cntr ‘ 𝑀 )
5 1 4 eqtr4i 𝑍 = ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )
6 ssid ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 )
7 2 3 cntzsubg ( ( 𝑀 ∈ Grp ∧ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) )
8 6 7 mpan2 ( 𝑀 ∈ Grp → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) )
9 5 8 eqeltrid ( 𝑀 ∈ Grp → 𝑍 ∈ ( SubGrp ‘ 𝑀 ) )
10 ssid 𝑍𝑍
11 1 cntrsubgnsg ( ( 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑍𝑍 ) → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) )
12 9 10 11 sylancl ( 𝑀 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) )