| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrnsg.z |
⊢ 𝑍 = ( Cntr ‘ 𝑀 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 3 |
|
eqid |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) |
| 4 |
2 3
|
cntrval |
⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = ( Cntr ‘ 𝑀 ) |
| 5 |
1 4
|
eqtr4i |
⊢ 𝑍 = ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) |
| 6 |
|
ssid |
⊢ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) |
| 7 |
2 3
|
cntzsubg |
⊢ ( ( 𝑀 ∈ Grp ∧ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝑀 ∈ Grp → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| 9 |
5 8
|
eqeltrid |
⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ) |
| 10 |
|
ssid |
⊢ 𝑍 ⊆ 𝑍 |
| 11 |
1
|
cntrsubgnsg |
⊢ ( ( 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑍 ⊆ 𝑍 ) → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) ) |