Metamath Proof Explorer


Theorem cntrss

Description: The center is a subset of the base field. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis cntrss.1 𝐵 = ( Base ‘ 𝑀 )
Assertion cntrss ( Cntr ‘ 𝑀 ) ⊆ 𝐵

Proof

Step Hyp Ref Expression
1 cntrss.1 𝐵 = ( Base ‘ 𝑀 )
2 eqid ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 )
3 1 2 cntrval ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) = ( Cntr ‘ 𝑀 )
4 1 2 cntzssv ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ⊆ 𝐵
5 3 4 eqsstrri ( Cntr ‘ 𝑀 ) ⊆ 𝐵