| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
cntrval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
| 3 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Cntz ‘ 𝑚 ) = ( Cntz ‘ 𝑀 ) ) |
| 4 |
3 2
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Cntz ‘ 𝑚 ) = 𝑍 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
| 7 |
4 6
|
fveq12d |
⊢ ( 𝑚 = 𝑀 → ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) ) = ( 𝑍 ‘ 𝐵 ) ) |
| 8 |
|
df-cntr |
⊢ Cntr = ( 𝑚 ∈ V ↦ ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) ) ) |
| 9 |
|
fvex |
⊢ ( 𝑍 ‘ 𝐵 ) ∈ V |
| 10 |
7 8 9
|
fvmpt |
⊢ ( 𝑀 ∈ V → ( Cntr ‘ 𝑀 ) = ( 𝑍 ‘ 𝐵 ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝑀 ∈ V → ( 𝑍 ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) ) |
| 12 |
|
0fv |
⊢ ( ∅ ‘ 𝐵 ) = ∅ |
| 13 |
|
fvprc |
⊢ ( ¬ 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ∅ ) |
| 14 |
2 13
|
eqtrid |
⊢ ( ¬ 𝑀 ∈ V → 𝑍 = ∅ ) |
| 15 |
14
|
fveq1d |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝐵 ) = ( ∅ ‘ 𝐵 ) ) |
| 16 |
|
fvprc |
⊢ ( ¬ 𝑀 ∈ V → ( Cntr ‘ 𝑀 ) = ∅ ) |
| 17 |
12 15 16
|
3eqtr4a |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) ) |
| 18 |
11 17
|
pm2.61i |
⊢ ( 𝑍 ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) |