Step |
Hyp |
Ref |
Expression |
1 |
|
cntzrec.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzrec.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
4 |
3 2
|
cntzi |
⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
5 |
4
|
ralrimiva |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
6 |
|
ssralv |
⊢ ( 𝑇 ⊆ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
8 |
5 7
|
syl5 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
9 |
8
|
ralrimiv |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
10 |
1 2
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
11 |
|
sstr |
⊢ ( ( 𝑇 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → 𝑇 ⊆ 𝐵 ) |
12 |
11
|
ancoms |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝐵 ) |
13 |
1 3 2
|
sscntz |
⊢ ( ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
14 |
10 12 13
|
sylancr |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
15 |
9 14
|
mpbird |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ) |