Step |
Hyp |
Ref |
Expression |
1 |
|
cntzcmn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cntzcmn.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
3 |
1 2
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
4 |
3
|
a1i |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ CMnd ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
7 |
|
simp2 |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
8 |
7
|
sselda |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
10 |
1 9
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
11 |
5 6 8 10
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
13 |
1 9 2
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
16 |
15
|
3expia |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
17 |
16
|
ssrdv |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝐵 ⊆ ( 𝑍 ‘ 𝑆 ) ) |
18 |
4 17
|
eqssd |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = 𝐵 ) |