| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzcmn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cntzcmn.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 3 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 ) | 
						
							| 5 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝑆 )  →  𝐺  ∈  CMnd ) | 
						
							| 6 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 8 | 7 | sselda | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 10 | 1 9 | cmncom | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 11 | 5 6 8 10 | syl3anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 13 | 1 9 2 | cntzel | ⊢ ( ( 𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 14 | 13 | 3adant1 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 16 | 15 | 3expia | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ) ) | 
						
							| 17 | 16 | ssrdv | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵 )  →  𝐵  ⊆  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 18 | 4 17 | eqssd | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  =  𝐵 ) |