Metamath Proof Explorer
Description: Discharge the centralizer assumption in a commutative monoid.
(Contributed by Mario Carneiro, 24-Apr-2016)
|
|
Ref |
Expression |
|
Hypotheses |
cntzcmnf.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
cntzcmnf.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
|
|
cntzcmnf.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
|
|
cntzcmnf.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
Assertion |
cntzcmnf |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzcmnf.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cntzcmnf.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 3 |
|
cntzcmnf.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
cntzcmnf.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 5 |
4
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 6 |
1 2
|
cntzcmn |
⊢ ( ( 𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵 ) → ( 𝑍 ‘ ran 𝐹 ) = 𝐵 ) |
| 7 |
3 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑍 ‘ ran 𝐹 ) = 𝐵 ) |
| 8 |
5 7
|
sseqtrrd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |