Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzcmnss.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cntzcmnss.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | cntzcmnss | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cntzcmnss.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cntzcmnss.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | 1 2 | cntzcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = 𝐵 ) | 
| 4 | sseq2 | ⊢ ( 𝐵 = ( 𝑍 ‘ 𝑆 ) → ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) | |
| 5 | 4 | eqcoms | ⊢ ( ( 𝑍 ‘ 𝑆 ) = 𝐵 → ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) | 
| 6 | 5 | biimpd | ⊢ ( ( 𝑍 ‘ 𝑆 ) = 𝐵 → ( 𝑆 ⊆ 𝐵 → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) | 
| 7 | 6 | adantld | ⊢ ( ( 𝑍 ‘ 𝑆 ) = 𝐵 → ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) | 
| 8 | 3 7 | mpcom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) |