Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cntzcmnss.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
cntzcmnss.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
Assertion | cntzcmnss | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnss.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | cntzcmnss.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
3 | 1 2 | cntzcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = 𝐵 ) |
4 | sseq2 | ⊢ ( 𝐵 = ( 𝑍 ‘ 𝑆 ) → ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) | |
5 | 4 | eqcoms | ⊢ ( ( 𝑍 ‘ 𝑆 ) = 𝐵 → ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |
6 | 5 | biimpd | ⊢ ( ( 𝑍 ‘ 𝑆 ) = 𝐵 → ( 𝑆 ⊆ 𝐵 → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |
7 | 6 | adantld | ⊢ ( ( 𝑍 ‘ 𝑆 ) = 𝐵 → ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |
8 | 3 7 | mpcom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) |